What is the mass of oxygen in 250 go of sulfiric acid, H2CO4

Answers

Answer 1
Answer: Hope this helps you.
Answer 2
Answer:

Your answer is 160 grams I hope this helps


Related Questions

Why does ammonium nitrate (NH4NO3) dissolve readily in water even though the dissolution process is endothermic by 26.4 kJ/mol? Why does ammonium nitrate (NH4NO3) dissolve readily in water even though the dissolution process is endothermic by 26.4 kJ/mol? The vapor pressure of the water decreases upon addition of the solute. The osmotic properties of the system lead to this behavior. The overall enthalpy of the system decreases upon addition of the solute. The overall entropy of the system increases upon dissolution of this strong electrolyte. The overall enthalpy of the system increases upon dissolution of this strong electrolyte.
Chemistry work here. Please help as soon as possible. I have allot of questions that needs to be answered. Can someone do it for me?
Joan has four containers. The chart below shows the mass and volume of each of the containers. Two of the containers are filled with solids, one is filled with a liquid, and one is filled with a gas.
The following reaction was monitored as a function of time: A→B+C A plot of ln[A] versus time yields a straight line with slope −4.3×10−3 /s. If the initial concentration of A is 0.260 M, what is the concentration after 225 s?
Write the full ionic equation and net ionic equation for sodium dihydrogen phosphate + calcium carbonate, sodium oxilate + calclium carbonate, and sodium hydrogen phosphate + calcium carbonate

The amount of I − 3 ( aq ) in a solution can be determined by titration with a solution containing a known concentration of S 2 O 2 − 3 ( aq ) (thiosulfate ion). The determination is based on the net ionic equation 2 S 2 O 2 − 3 ( aq ) + I − 3 ( aq ) ⟶ S 4 O 2 − 6 ( aq ) + 3 I − ( aq ) Given that it requires 29.4 mL of 0.380 M Na 2 S 2 O 3 ( aq ) to titrate a 30.0 mL sample of I − 3 ( aq ) , calculate the molarity of I − 3 ( aq ) in the solution.

Answers

Answer:

The molarity of I₃⁻ (aq) solution: M₂ = 0.186 M

Explanation:

Given net ionic equation:  

2S₂O₃²⁻ (aq) + I₃⁻ ( aq ) ⟶ S₄O₆²⁻ (aq) + 3I⁻ (aq)

Number of moles of S₂O₃²⁻: n₁ = 2, Number of moles of I₃⁻: n₂ = 1

Given- For S₂O₃²⁻ solution: Molarity: M₁ = 0.380 M, Volume: V₁ = 29.4 mL;

For I₃⁻ (aq) solution: Molarity: M₂ = ? M, Volume: V₂ = 30.0 mL

         

To calculate the molarity of I₃⁻ (aq) solution, we use the equation:

(M_(1)V_(1))/(n_(1))=(M_(2)V_(2))/(n_(2))

((0.380 M)* (29.4 mL))/(2)=(M_(2)* (30.0 mL))/(1)

\Rightarrow M_(2) = ((0.380 M)* (29.4 mL))/((30.0 mL)* 2) = 0.186 M

Therefore, the molarity of I₃⁻ (aq) solution: M₂ = 0.186 M

Compare Dalton’s and Democritus’ ideas.

Answers

Answer:

please give me brainlist and follow

Explanation:

The key difference between Democritus and Dalton atomic theory is that the Democritus atomic theory is an ancient theory that scientists later refined and elaborated whereas Dalton atomic theory is a comparatively modern, scientific theory that we cannot discard due its important statements.

Solve the following problem:

Answers

Answer:

Option 3.

Explanation:

Isomerism is a phenomenon where by two or more compounds have the same molecular formula but different structural patterns.

Geometric Isomerism is a type of Isomerism that occurs within a double bond i.e Geometric isomers have different arrangement within the double bond.

Considering the options given above,

The 1st option is exactly the same as the compound only, it is inverted.

The 2nd option is still the same as the compound, only it is laterally inverted.

The 3rd option satisfy geometric Isomerism as the arrangement differ from the compound in the double bond.

The 4th option is entirely a saturated compound in which geometric Isomerism is not possible.

How do test with crash dummies, seat belts, and air bags illustrate newton's first law of motion??

Answers

Answer:

Newton’s law of inertia is illustrated in tests with crash dummies, seat belts, and airbags, wherein the object stays in motion unless there is an unbalanced force applied to it.

Inertia is the main reason why there are seatbelts and airbags in the car. In this case, when the seatbelt is trapped to the passenger, the passenger experiences the same state of motion as the car. If the car accelerates/decelerates, the passenger experiences it too. When the car experiences collision, an unbalance force is acted upon it. This causes the car to stop abruptly, and the passenger shares the same state of motion because of the seatbelt and the airbags that apply the unbalanced force to stop the passenger to go forward.

What is the molecular geometry if you have a double bond, a single bond and 1 lone pair around the central atom?

Answers

Answer:

4 pairs are needed for the bonds, leaving 1 lone pair. Each double bond uses 2 bond pairs and can be thought of as a single unit. There are 2 double bond units and 1 lone pair, which will try to get as far apart as possible - taking up a trigonal planar arrangement.

g The electronic structure of which ONE of the following species cannot be adequately described by a single Lewis formula? (In other words, the electronic structure of which one can only be described by drawing two or more resonance structures?) A) C2H4 B) SO3 2– C) SO3 D) C3H8 E) HCN

Answers

Answer:

C) SO3

Explanation:

Lewis formula shows the bonding between atoms of a molecule and expresses the lone pair present in the atoms.

SO3 or Sulfur trioxide cannot be adequately described by a single Lewis formula because it has majorly 3 resonance structures because Sulfur does not follow the octet rule and can expand electrons in its outer shell.

Hence, the correct answer is C) SO3

Final answer:

SO3, or Sulfur Trioxide, is the molecule whose electronic structure requires the depiction of multiple resonance structures for adequate description. The rest of the species can be represented with a single Lewis structure.

Explanation:

The electronic structure that can only be described by drawing two or more resonance structures is SO3 (Sulfur Trioxide). This molecule has 24 valence electrons having a central atom with expanded octet. The Lewis structure is drawn in a way that three resonance structures are needed to represent the bonding in this molecule adequately. On the other hand, the rest of the species given in the options can be described using a single Lewis formula.

Learn more about Resonance Structures here:

brainly.com/question/34190348

#SPJ6