7. What is the molar mass of each of the following elements?a) helium, He(s)
c) potassium, K(s)
b) manganese, Mn(s)
d) boron, B(s)

Answers

Answer 1
Answer:

Answer:

The molar mass of:

Helium = 4.00 g/mol

Potassium = 39.0983 g/mol

Manganese = 54.94 g/mol.

Boron = 10.81 g / mol

Explanation:

Helium = 4.00 g/mol

Potassium = 39.0983 g/mol

Manganese = 54.94 g/mol.

Boron = 10.81 g / mol


Related Questions

Which aqueous solution is colored?1. CuSO4(aq) 2. BaCl2(aq) 3. KCl(aq) 4. MgSO4(aq)
What forces of molecular attraction is weakest?A. Dipole interactionB. DispersionC. Hydrogen bond D. Single covalent bond
How many atoms are in 2.3 moles Au?
Hydrochloric acid reacts with sodium hydroxide to produce sodium chloride and water. If 20.6 g of sodium hydroxide reacts with an excess of hydrochloric acid, how many grams of sodium chloride are produced? HCl + NaOH → NaCl + H2O
How many s’mores can you make from the following combinations? What is the limiting reagent?

The activiation energy required for a chemical reaction can be decreased by? A) increasing the surface area of the reactant.
B) increasing the temperature of the reactant.
C) adding a catalyst to the reaction.
D)adding more reactant​

Answers

Answer:

C)

Explanation:

C) adding a catalyst to the reaction.

Calculate the pH of a buffer solution made by adding 15.0 g anhydrous sodium acetate (NaC2H3O2) to 100.0 mL of 0.200 M acetic acid. Assume there is no change in volume on adding the salt to the acid. (pKa for acetic acid is 4.74 or Ka is 1.8 x 10-5)3.

Answers

Answer:

pH of Buffer Solution 5.69

Explanation:

Mole of anhydrous sodium acetate = (Given mass)/(Molecular mass)

                                                           = (15)/(82)

                                                           = 0.18 mole

 100 ml of 0.2 molar acetic acid  means

= M x V

= 0.2 x 100

= 20 mmol

= 0.02 mole

Using Henderson equation to find pH of Buffer solution

pH = pKa + log([Salt])/([Acid])

     = 4.74 + log(0.18)/(0.02)

     = 4.74 + log 9

     = 5.69

So pH of the Buffer solution = 5.69

If you wanted to change the polarity of hydrogen bromide (HBr) by substituting the bromine with a different atom. Which atom would increase the polarity of the molecule?

Answers

To increase the polarity of HBr, the bromine atom can be replaced with a hydrogen atom.

A polar molecule is one in which a dipole moment exists. There is a positive end and a negative end in a polar molecule. Conventionally, the direction of the dipole is from the positive end of the molecule towards the negative end of the molecule.

If we want to increase the polarity of the molecule then we must substitute the bromine atom with a more electronegative atom. In this case, chlorine is  the best option.

Missing parts;

If you wanted to change the polarity of hydrogen bromide (HBr) by substitutingthe bromine by a different atom. Which atom would increase the polarity of the  molecule?

A. chlorine (CI)

B. iodine (1)

C. sulfur (S)

D. hydrogen (H)

Learn more: brainly.com/question/24775418

Answer:

This question is incomplete as it lacks options, the options are:

A. chlorine (CI)

B. iodine (1)

C. sulfur (S)

D. hydrogen (H)

The answer is A. Chlorine

Explanation:

Polarity of a substance in chemistry is a function of electric charges in the atoms of the molecules involved. Polarity, however, can be increased or decreased in molecules depending on the charges of the atoms that form them.

Since polarity increases when an atom in the molecule has a high ability to pull electrons toward itself i.e. electronegativity, one atom that can be substituted for Bromine in the hydrogen bromide (HBr) molecule in order to increase its polarity is CHLORINE. This is because Chlorine (Cl) is more electronegative than Bromine atom, hence, will pull more electrons from hydrogen to make the HCl molecule more polar than HBr.

Inside a calorimeter, two solutions are mixed and result in an endothermic reaction. Which of the following best illustrates how this reaction affects the water in the calorimeter? (2 points)Select one:
a. The reaction has no effect on the water. The kinetic energy of the water molecules remains the same.
b. The reaction causes the temperature of the water to increase. The kinetic energy of the water molecules increases.
c. The reaction causes the temperature of the water to decrease. The kinetic energy of the water molecules decreases.
d. The reaction causes the temperature of the water to decrease. Then, the water gains heat from the surroundings and the kinetic energy of the water molecules increases.

Answers

The correct option is C. A calorimeter is an isolated system. In isolated systems there is no exchange whatsoever with the surrounding. In an isolated system, an endothermic reaction results in a decrease in the temperature of the system. This is in contrast to the effect of an endothermic reaction in an open system. The heat of reaction remains a positive quantity.

Ascorbic acid (vitaminc.Does not contain a traditional carboxylic acid group, but it is, nevertheless, still fairly acidic (pka = 4.2). Identify the acidic proton and explain your choice using resonance structures, if necessary:

Answers

Let us see the structure of ascorbic acid


As shown there is no COOH group however the OH group can lose a proton and forms conjugate base

The conjugate base formed is stabilized due to resonance

More the stability of conjugate base more the strength of acid

Hence ascorbic acid behaves as an acid

What is the density of iron if it crystallizes in a body-centered cubic unit cell with an edge length of 287 pm

Answers

Answer

Density = 7.87g/cm^3

Explanation:

Density is the ratio of mass of the given object to the volume of the object, in this question iron is the given object, then we make use of atomic number of iron

Given:

Length= 287pm = 287*10^-10cm

Atomic mass of Fe= 56.0u

Z=2(for body centered cubic unit cell)

Avogadro number (N 0)=6.022× 10^23

Density= ZM/a^3 × N

Where

Z= body centered cubic unit cell

Then substitute

N= Avogadro's number

a=Length

Density = (2× 56)/(287*10^-10cm)^3 × (6.022 × 10^23)

Density = 7.87g/cm^3

Final answer:

The density of iron in a body-centered cubic unit cell can be calculated using the mass and volume of the unit cell.

Explanation:

The density of iron can be calculated using the formula: density = mass/volume. To determine the mass of the unit cell, we need to know the molar mass of iron and the number of atoms in the unit cell. The molar mass of iron is 55.845 g/mol, and there are two iron atoms in the body-centered cubic unit cell of iron. The volume of the unit cell can be calculated using the formula: volume = (edge length)^3.

Putting these values into the formula, we get:

density = (2 * 55.845 g/mol) / ((287 pm)^3)

Converting the edge length to meters (1 pm = 1e-12 m) and calculating, we find that the density of iron is approximately 7.86 g/cm³.

Learn more about density of iron here:

brainly.com/question/33779549

#SPJ11