If there is direct variation and y=75 when x=25, find x when y=48.A. x=16

B. x=10

C. x=12

D. x=14

Answers

Answer 1
Answer:

If there is direct variation and y=75 when x=25,when y=48 X = 16. Therefore, option A is correct.

What is direct variation ?

link between two variables that can be described mathematically by an equation where one variable equals a constant multiplied by the other. For instance, the constant of variation is k = = 3 if y varies straight as x and y = 6 when x = 2. Consequently, y = 3x is the equation that describes this directvariation.

When x is not equal to zero, an equation of the form y = kx describes the linear function known as direct variation. When x is not equal to zero and k is a nonzero real number constant, the equation of the form xy = k describes the nonlinear function known as inverse variation.

x = ky

where k is constant

25 = k × 75

25 / 75 = k

k = 1 / 3

now when y = 48 then substitute the values

x = ky

x = 1 ÷ 3 × 48

x = 16

Thus, option A is correct.

To learn more about direct variation, follow the link;

brainly.com/question/13977805

#SPJ5

Answer 2
Answer: x = ky where k is a constant

first u find k so :
25 = k * 75
25/75 = k
k = 1/3

now when y = 48 just substitute the values
x = ky
x = 1/3 * 48
x = 16

the answer is A) x=16

Related Questions

Redox reactions stand for oxidation/reduction reactions. True or false: an oxidation reaction is always paired with a reduction reaction.
At standard temperature and pressure (0 ∘C and 1.00 atm ), 1.00 mol of an ideal gas occupies a volume of 22.4 L. What volume would the same amount of gas occupy at the same pressure and 55 ∘C ?
If a molecule diffusing through extracellular fluid travels 1 mm in 1 sec, how long will it take that molecule to diffuse 1 cm
Which of the following shows the abbreviation for an SI unit of density?
1. What kind of intermolecular forces act between a chlorine monofluoride molecule and a hydrogen bromide moleculeNote: If there is more than one type of intermolecular force that acts, be sure to list them all, with a comma between the name of each force.

What is colloidal solutions

Answers

Explanation:

Colloidal solutions, or colloidal suspensions, are nothing but a mixture in which the substances are regularly suspended in a fluid. ... Colloidal systems can occur in any of the three key states of matter gas, liquid or solid. However, a colloidal solution usually refers to a liquid concoction.

Answer:

Colloidal solutions, or colloidal suspensions, are nothing but a mixture in which the substances are regularly suspended in a fluid.

Benzene is a starting material in the synthesis of nylon fibers and polystyrene (styrofoam). Its specific heat capacity is 1.74 J/g·°C. If 16.7 kJ of energy is absorbed by a 225-g sample of benzene at 20.0°C, what is its final temperature?

Answers

Answer: The final temperature of the sample is 62.66°C

Explanation:

To calculate the amount of heat absorbed, we use the equation:

Q=mc\Delta T

where,

Q = heat absorbed = 16.7 kJ = 16700 J   (Conversion factor:  1 kJ = 1000 J)

m = Mass of the sample = 225 g

c = specific heat capacity of sample = 1.74J/g.^oC

\Delta T = change in temperature = T_2-T_1=(T_2-20.0)

Putting values in above equation, we get:

16700=225g* 1.74J/g.^oC* (T_2-20)^oC\n\nT_2=62.66^oC

Hence, the final temperature of the sample is 62.66°C

The heat capacity of chloroform (trichloromethane,CHCl3)in the range 240K to 330K is given
byCpm/(JK-1mol-1) = 91.47
+7.5x10-2(T/K). In a particular experiment,
1.0molCHCl3 is heated from 273K to 300K. Calculate the
changein molar entropy of the sample.

Answers

Answer : The change in molar entropy of the sample is 10.651 J/K.mol

Explanation :

To calculate the change in molar entropy we use the formula:

\Delta S=n\int\limits^(T_f)_(T_i){(C_(p,m)dT)/(T)

where,

\Delta S = change in molar entropy

n = number of moles = 1.0 mol

T_f = final temperature = 300 K

T_i = initial temperature = 273 K

C_(p,m) = heat capacity of chloroform = 91.47+7.5* 10^(-2)(T/K)

Now put all the given values in the above formula, we get:

\Delta S=1.0\int\limits^(300)_(273){((91.47+7.5* 10^(-2)(T/K))dT)/(T)

\Delta S=1.0* [91.47\ln T+7.5* 10^(-2)T]^(300)_(273)

\Delta S=1.0* 91.47\ln ((T_f)/(T_i))+7.5* 10^(-2)(T_f-T_i)

\Delta S=1.0* 91.47\ln ((300)/(273))+7.5* 10^(-2)(300-273)

\Delta S=8.626+2.025

\Delta S=10.651J/K.mol

Therefore, the change in molar entropy of the sample is 10.651 J/K.mol

Write the name of the ionic compound Fe(NO2)2Answer
iron (III) nitrite
iron (II) nitrite
iron (1) nitrite

Answers

Final answer:

The name of the ionic compound Fe(NO2)2 is iron (II) nitrite.


Explanation:

The name of the ionic compound Fe(NO2)2 is iron (II) nitrite.


Learn more about Naming ionic compounds here:

brainly.com/question/30264547


What is the density of iron if it crystallizes in a body-centered cubic unit cell with an edge length of 287 pm

Answers

Answer

Density = 7.87g/cm^3

Explanation:

Density is the ratio of mass of the given object to the volume of the object, in this question iron is the given object, then we make use of atomic number of iron

Given:

Length= 287pm = 287*10^-10cm

Atomic mass of Fe= 56.0u

Z=2(for body centered cubic unit cell)

Avogadro number (N 0)=6.022× 10^23

Density= ZM/a^3 × N

Where

Z= body centered cubic unit cell

Then substitute

N= Avogadro's number

a=Length

Density = (2× 56)/(287*10^-10cm)^3 × (6.022 × 10^23)

Density = 7.87g/cm^3

Final answer:

The density of iron in a body-centered cubic unit cell can be calculated using the mass and volume of the unit cell.

Explanation:

The density of iron can be calculated using the formula: density = mass/volume. To determine the mass of the unit cell, we need to know the molar mass of iron and the number of atoms in the unit cell. The molar mass of iron is 55.845 g/mol, and there are two iron atoms in the body-centered cubic unit cell of iron. The volume of the unit cell can be calculated using the formula: volume = (edge length)^3.

Putting these values into the formula, we get:

density = (2 * 55.845 g/mol) / ((287 pm)^3)

Converting the edge length to meters (1 pm = 1e-12 m) and calculating, we find that the density of iron is approximately 7.86 g/cm³.

Learn more about density of iron here:

brainly.com/question/33779549

#SPJ11

How many miles of CaO form when 98.60 g CaCO3 decompose

Answers

Answer: 0.9851mol.

Explanation: