c) What is the magnitude of the contact force on the student by the ground?
Answer:
Explanation:
a) The magnitude of the net force on the student = 0 N since the student is standing still on level ground and upward reaction force = downward force.
b) the magnitude of the contact force on the student by the backpack = 80 N since the student was backing the backpack
c) the magnitude of the contact force o the student by the ground = 550 N + 80 N = 630 N reactional force on the student
B). The earth is round
C). Planets Move In circles
D). The orbit of mars is an ellipse
b) What is the minimum amount of electrical energy required bythe refrigerator to carry out this process if it operates betweenreservoirs at temperatures of 20.0 °C and -20.0 °C?
Answer:
(a)
(b) 556464 joule
Explanation:
Given:
The conversion of water of 20.0 °C to the ice of –20.0 °C will comprise of three steps:
We have,
(a)
Now, total heat lost in the process:
where:
= change in temperature of ice and water respectively.
is the total heat extracted during the process.
(b)
So, 556464 joule is the minimum electrical energy (by the law of energy conservation under no loss condition) required by refrigerator to carry out this process if it operates between the reservoirs at temperatures of 20.0 °C and -20.0 °C, because for a refrigerator to work in a continuous cycle it is impossible to transfer heat from a low temperature reservoir to a high temperature reservoir without consuming energy in the form of work. Here 556464 joule is the heat of the system to be eliminated.
The amount of heat extracted from the water involves the sum of heat lost as it cools and then freezes. The minimum energy needed by the refrigerator to do this is given by the formula for Carnot efficiency.
To answer these questions, we'll need to understand some fundamental principles of thermodynamics.
a) The heat Q taken from the water will be the sum of the heat released during cooling of the water until 0.0°C, and the heat released during freezing at 0.0°C. The heat loss as the water cools can be calculated using Q = mcΔt where m=mass of water, c=specific heat of water, and Δt=change in temperature. The heat loss as water freezes can be calculated using Q = mlf where lf is the latent heat of fusion. Adding these two quantities gives the total heat extracted.
b) The minimum energy needed by the refrigerator, W, is given by the Carnot efficiency formula, W = Q*(T_hot - T_cold)/T_hot, where T is in Kelvin. This would tell you how much energy the refrigerator needs to remove the heat from the water and cool it down to the freezer temperature.
#SPJ11
Answer:
It is b. 111.0 mm
Explanation:
ok
Given:
V1 = 4m3
T1 = 290k
P1 = 475 kpa = 475000 Pa
V2 = 6.5m3
T2 = 277K
Required:
P
Solution:
n = PV/RT
n = (475000 Pa)(4m3) / (8.314 Pa-m3/mol-K)(290k)
n = 788 moles
P = nRT/V
P = (788 moles)(8.314 Pa-m3/mol-K)(277K)/(6.5m3)
P = 279,204 Pa or 279 kPa