Answer:
i cant see the picture sorry
Explanation:
The dilution of each tube are as follows;
For each time a dilution is further diluted;
The dilution ratio is; 1 : 11; In essence, 0.5 mL of agent was added to 5.0 mL of nutrient broth.
Read more;
Answer:
Tube 2: 8.26 * 10^-3; Tube 4: 6.83 * 10^-5
Explanation:
In the serial dilutions for MIC test, the volume of nutrient broth in each tube should be equal: 5.0 mL. And the volume of agent in each dilution should also be similar: 0.5 mL.
The serial dilutions was as following:
The formula for osmotic pressure is:
where is osmotic pressure, is van't Hoff's factor, molarity, is Ideal gas constant, and T is Temperature.
= 132 atm
The van't Hoff's factor for glucose, = 1
Substituting the values in the above equation we get,
So, the molarity of the solution is .
Answer:
Chloroform.
Explanation:
Given,
Solvent requires 1g of compound per 100 mL
For water,
= 1g/47ml
= 2.1
For Chloroform,
= 1 g/8.1 mL
= 12.345679
For Diethyl ether,
= 1 g/370 mL
= 0.27
For Benzene,
= 1 g/86 mL
= 1.2
Partition coefficients:
Water = -
chloroform = 5.9
Diethyl = .13
Benzene = .57
The solvent chloroform would be chosen for drawing out the compound out of an aqueous solution as it has the maximum solubility.
The solubility of a compound in different solvents will determine its concentration in each solvent. The partition coefficient represents the relative solubility of a compound in two immiscible solvents. Chloroform would be the best choice to extract the compound from an aqueous solution.
The solubility of a compound is usually expressed as grams of solute per 100 mL of solvent. To calculate the solubility, you can use the following formula:
Solubility (g/100 mL) = (mass of solute / volume of solvent) * 100
Using this formula, the solubility of the compound in water is 47 g/100 mL, in chloroform is 97.53 g/100 mL, in diethyl ether is 2.70 g/100 mL, and in benzene is 1.16 g/100 mL.
The partition coefficient is a measure of the compound's solubility in two immiscible solvents. To calculate it, divide the solubility of the compound in one solvent by its solubility in another solvent. For example, the partition coefficient between chloroform and water would be:
Partition coefficient = Solubility in chloroform / Solubility in water = 97.53 g/100 mL / 47 g/100 mL = 2.07
The larger the partition coefficient, the more soluble the compound is in the first solvent compared to the second solvent. Based on the partition coefficients, chloroform would be the best choice to extract the compound from an aqueous solution.
#SPJ3
(b)the herbicide paraquat, C12H14N2CL2
(c)caffein, C8H10N4O2
(d)urea, CO(NH2)2
(e)a typical soap,C17H35CO2Na
Answer:
a)C2HBrClF3 = 197.35 g/mol
b)C12H14N2CL2 = 229.06g/mol
c)C8H10N4O2 = 194.22g/mol
d) CO(NH2)2=60.07 g/mol
e)C17H35CO2Na = 306.52 g/mol
Explanation:
Molar mass of a compound is equal to the sum of the atomic masses of the constituent elements.
a) C2HBrClF3
b) C12H14N2CL2
c) C8H10N4O2
d) CO(NH2)2
e) C17H35CO2Na
Answer:
We are given that there is 95% ethanol by mass in rectified spirit
so, we can say that in a 100g sample, we have 95 grams of ethanol and 5 grams of water
we will find the number of moles of ethanol and water in 100g solution of rectified spirit and use that to calculate the mole fraction
Moles of Ethanol:
Molar mass of ethanol = 46 grams / mol
Number of moles = Given mass / molar mass
Number of moles = 95 / 46
Moles of Ethanol = 2 moles (approx)
Moles of Water:
Molar mass of water = 18 grams per mol
Number of moles = Given mass / molar mass
Moles of water = 5 / 18
Moles of water = 0.28 moles (approx)
Mole Fractions:
Mole fraction of a specific compound is the number of moles of that compound divided by the total number of moles in the solution
Mole fraction of Ethanol:
Moles of ethanol / (moles of ethanol + moles of water)
2 / (2 + 0.28)
2 / (2.28) = 0.9 (approx)
Mole fraction of Water:
Moles of water / (Moles of ethanol + moles of water)
0.28 / (2 + 0.28)
0.28 / (2.28) = 0.1 (approx)