Explain how ultrasound devices use the Doppler effect to create images of body parts. HELP ME ASAP!! Will give brainliest answer!!

Answers

Answer 1
Answer:

Answer:

Transmits high-frequency (1 to 5 megahertz) sound pulses into your body using a probe. The sound waves travel into your body and hit a boundary between tissues (e.g. between fluid and soft tissue, soft tissue and bone).

Explanation:

Doppler ultrasound works by measuring sound waves that are reflected from moving objects, such as red blood cells.

Answer 2
Answer:

Answer:

The guy above is pretty good

Explanation:

I'd go with that answer, give them brainliest


Related Questions

Which is the SI base unit for mass?
Am example of a good electrical isulator isa.rubberb.ironc.copperd.aluminum
A volumetric flask made of Pyrex is calibrated at 20.0°C. It is filled to the 150-mL mark with 34.5°C acetone. After the flask is filled, the acetone cools and the flask warms so that the combination of acetone and flask reaches a uniform temperature of 32.0°C. The combination is then cooled back to 20.0°C. (The average volume expansion coefficient of acetone is 1.50 10-4(°C)−1.) (a) What is the volume of the acetone when it cools to 20.0°C?
An athlete swings a 6.50-kg ball horizontally on the end of a rope. The ball moves in a circle of radius 0.900 m at an angular speed of 0.700 rev/s. (a) What is the tangential speed of the ball
The predictions of Rutherford's scattering formula failed to correspond with experimental data when the energy of the incoming alpha particles exceeded 32MeV32MeV. This can be explained by the fact that the predictions of the formula apply when the only force involved is the electromagnetic force and will break down if the incoming particles make contact with the nucleus. Use the fact that Rutherford's prediction ceases to be valid for alpha particles with an energy greater than 32MeV32MeV to estimate the radius rrr of the gold nucleus.

The heating element of a coffeemaker operates at 120 V and carries a current of 4.50 A. Assuming the water absorbs all of the energy converted by the resistor, calculate how long it takes to heat 0.525 kg of water from room temperature (23.0°C) to the boiling point.

Answers

Answer:

It will take 313.376 sec to raise temperature to boiling point

Explanation:

We have given that potential difference V = 120 Volt

Current i = 4.50 A

So resistance R=(V)/(i)=(120)/(4.50)=26.666ohm

Heat flow in resistor will be equal to Q=i^2Rt

It is given that this heat is used for boiling the water

Mass of the water = 0.525 kg = 525 gram

Specific heat of water 4.186 J/gram/°C

Initial temperature is given as 23°C

Boiling temperature of water = 100°C

So change in temperature = 100-23 = 77°C

Heat required to raise the temperature of water Q=mc\Lambda T

So 4.50^2* 26.666* t=525* 4.186* 77

t = 313.376 sec

So it will take 313.376 sec to raise temperature to boiling point

Answer:

Explanation:

Voltage, V = 120 V

Current, i = 4.5 A

mass of water, m = 0.525 kg

initial temperature of water, T1 = 23°C

Final temperature of water, T2 = 100 °C

specific heat of water, c = 4.18 x 1000 J/kg °c

let the time taken is t.

Heat given by the heater = heat gain by the water

V x i x t = m x c x (T2 - T1)

120 x 4.5 x t = 0.525 x 4.18 x 1000 x (100 - 23)

540 t = 47701.5

t = 88.34 s

If George Washington had become "King of America," our government might have become?

Answers

Answer:

Monachry

Explanation:

Hope this helped!!!

Classical mechanics is an extremely well tested model. Hundreds of years worth of experiments, as well as most feats of engineering, have verified its validity. If special relativity gave very different predictions than classical physics in everyday situations, it would be directly contradicted by this mountain of evidence. In this problem, you will see how some of the usual laws of classical mechanics can be obtained from special relativity by simply assuming that the speeds involved are small compared to the speed of light.Two of the most surprising results of special relativity are time dilation and length contraction, namely, that measured intervals in time and space are not absolute quantities but instead appear differently to different observers. The equations for time dilation and length contraction can be written t=?t0 and l=l0/?, where?=11?u2c2?.Part AFind the first two terms of the binomial expansion for ?.Express your answer in terms of u and c.Hints? = 1+12(uc)2 … SubmitMy AnswersGive UpCorrectYou can see that ??1 if u?c, as is the case in most situations. If you set ?=1 in the equations for time dilation and length contraction you recover the equations of classical physics, which state essentially that there is no time dilation or length contraction. Therefore, we don't see any appreciable length contraction or time dilation in everyday life.Part BConsider a case involving a speed that is fast compared to those encountered in our everyday life: a spy plane moving at 1500m/s. Find the deviation from classical physics (??1) that relativity predicts at this speed. Use only the first two terms of the binomial expansion, as your calculator may not be able to handle the necessary number of digits otherwise.Express your answer to four significant figures.??1 = 1.250×10?11SubmitMy AnswersGive UpCorrectIf you lived for 70 years in such a spy plane moving at 1500m/s, this would amount to about 28ms of cumulative time difference between you and people who lived at rest relative to the earth when you finally landed. Thus, it is not surprising that relativistic effects are not observed in everyday life, or even at the fringes of everyday life. By using atomic clocks, which can measure time accurately to one part in 1013 or better, the time dilation at the normal speed for an airliner has been verified.Part CNow, consider the relativistic velocity addition formula:speed=v+u1+vuc2.If v=u=0.01c=1% of c, what is the relativistic sum of the two speeds?Express your answer as a percentage of the speed of light to five significant figures.

Answers

Answer:

The Answer is 0.019998c

Explanation:

Please see the attached Picture for the answer.

If Jim could drive a Jetson's flying car at a constant speed of 490 km/hr across oceans and space, approximately how long (in millions of years, in 106 years) would he take to drive to a nearby star that is 4.5 light-years away? Use 9.461 × 1012 km/light-year and 8766 hours per year (365.25 days). unanswered

Answers

Answer:

109.5 million years

Explanation:

The question asked us to find the time.

Remember that

Rate of velocity = distance / time, and this,

time taken = distance/rate

Due to the confusing nature of the units, we would have to be converting them to a more uniform one.

1 km is equal to 9.461*10^12 km/light-year, that's if we try to convert km to light year.

Since the speed is in km, the distance has to be in km also, and therefore, we convert ly to km:

4.5 light-years = 9.461*10^12 km/light-year) = 42.57*10^13 km

We that this value as our distance, in km.

Also,

Time = distance/speed

Time = 45.57*10^13 km / 490 km/hr = 9.3*10^11 hr

Now the next step is to convert hours to years, using the conversion factor 8766 hr/yr.

time (in years) = 9.6*10^11 hr / 8766 hr/yr) = 10.95*10^7 years

the final step is to divide the time in years by 10^6 years/million years, which gives the final answer as the trip takes 109.5 million years.

How long does it take a wheel that is rotating at 33.3 rpm to speed up to 78.0 rpm if it has an angular acceleration of 2.15 rad/ s 2?

Answers

initial angular speed is given by 33.3 rpm

w_0 = 2\pi (33.3)/(60)

w_0 = 3.49 rad/s

final angular speed is given by 78 rpm

w_f = 2\pi (78)/(60)

w_f = 8.17 rad/s

now by using kinematics we will have

w_f = w_0 + \alpha * t

8.17 = 3.49 + 2.15 * t

t = 2.17 seconds

Ball 1 (1.5 kg) moves to the right at 2 m/s and ball 2 (2.5 kg) moves to the left at 1.5 m/s. The balls stick together after collision. What is the speed and direction of ball 2 after the collision?

Answers

Answer:

0.1875 m/s leftward

Explanation:

Taking rightwards as positive

We are given:

Ball 1:

Mass (m1) = 1.5 kg

velocity (u1) = 2 m/s

Ball 2:

Mass (m2) = 2.5 kg

velocity (u2) = -1.5 m/s          [negative because it is in the opposite direction]

Speed and Direction of Ball 2:

We are told that the balls stick together after the collision

We can say that the balls have the same velocity since they are sticking together

So, Final velocity of Ball 1 (v1) = Final velocity of Ball 2 (v2) = V m/s

According to the law of conservation of momentum

m1u1 + m2u2 = m1v1 + m2v2

replacing the variables

1.5(2) + (2.5)(-1.5) = V (1.5 + 2.5)                     [v1 = v2 = V]

3 + (-3.75) = 4V

-0.75 = 4V

V = -0.75/4                                                    [dividing both sides by 4]

V = -0.1875 m/s

Hence, the balls will move at a velocity of 0.1875 m/s in the Leftward direction