Explanation:
Butanol (С4Н9OH)
Structural formula is :-
CH3-CH2-CH2-CH2-OH
O neutrons
O Neither... An atom isn't neutral!
Taking into account the constitution of an atom, an atom is neutral because it has the same number of protons as it has electrons.
An atom is the smallest constituent unit of ordinary matter that has the properties of a chemical element.
Every atom consists of a nucleus in which neutrons and protons meet and energy levels where electrons are located.
The neutron is an electrically neutral subatomic particle, while the proton has a positive electrical charge. Electrons have a negative charge, move around the nucleus at different energy levels and are attracted to protons, positive in the atom through electromagnetic force.
An atom is considered electrically neutral when it has the same number of positive and negative charges. That is, an electrically neutral atom has the same number of protons (with a positive charge) and electrons (with a negative charge).
In summary, an atom is neutral because it has the same number of protons as it has electrons.
Learn more about atomelectrically neutral:
#SPJ2
Answer:
1.25 g
Explanation:
Now we have to use the formula;
N/No = (1/2)^t/t1/2
N= mass of cesium-137 left after a time t (the unknown)
No= mass of cesium-137 present at the beginning = 5.0 g
t= time taken for 5.0 g of cesium-137 to decay =60 years
t1/2= half life of cesium-137= 30 years
Substituting values;
N/5= (1/2)^60/30
N/5= (1/2)^2
N/5= 1/4
4N= 5
N= 5/4
N= 1.25 g
Therefore, 1.25 g of cesium-137 will remain after 60 years.
Answer:
I assume you mean which best describes heat.
The answer is The energy transferred between samples of matter because of a difference in their temperatures.
To explain this further, heat is total energy of an object, temperature is average energy. The change in temperature between two objects is called heat!
Think about transfers of heat in everyday terms: if you put an ice cube in your tea (I don't know, just bear with me), the cold does not transfer to the tea. The heat of the tea is transferred to the ice cube! And this is clearly a difference in heat.
Answer:
1 litre of 1.0 M NaCl
Explanation:
When an ionic compound dissolves in water, it dissociates into ions. Consider the dissolution of sodium chloride in water;
NaCl(s) ------> Na^+(aq) + Cl^-(aq)
Hence, two solute particles are obtained from each formula unit of NaCl, a greater concentration of NaCl will contain a greater number of sodium an chloride ion particles.
Glucose is a molecular substance and does not dissociate in solution hence it yields a lesser number of particles in solution even at the same concentration as NaCl
The solution with the greatest number of solute particles is 1 litre of 1.0 M NaCl, as ionic compounds dissociate into individual ions, thus providing more particles per litre.
Given the details of the question, the solution that would be expected to contain the greatest number of solute particles would be 1 litre of 1.0 M NaCl. This is because when ionic compounds like sodium chloride are placed in water, they dissociate into individual ions. In the case of NaCl, it splits into two ions, sodium (Na+) and chloride (Cl-). Thus, a 1.0 M solution of NaCl would actually contain 2.0 moles of particles per litre because each formula unit of NaCl gives two particles. Covalently bonded molecules like glucose do not dissociate in solution, therefore, a 1.0 M glucose solution would have 1.0 mole of particles per litre.
#SPJ3
Explanation:
There are 1.51 x 1024 molecules of carbon dioxide in 2.50 moles of carbon dioxide.