Answer:
Draw the predominant product(s) of the following reactions including stereochemistry when it is appropriate.
CH3CH2 C C CH3 H2O/H2SO4/HgSO4
Explanation:
The given compound is: pent-2-yne.
When it reacts with water, in presence of sulphuric acid and mercuric sulphate then a ketone is formed as shown below:
This reaction is an example of nucleophilic attack of water on carbon carbon triple bond.
The general mechanism of the reaction is hsown below:
Pent-2-yne reacts with water and form 3-pentanone.
The reaction is shown below:
The reaction is the hydration of an alkene in an acidic environment, resulting in the formation of 2-butanol. This result is in accordance with Markovnikov's rule, which determines the position of the hydroxyl group in the resultant product.
The question refers to the acidity-catalyzed hydration of an alkene. In this case, you have an alkene CH3CH2 - CC - CH3 reacting in an acidic environment with water (H2O). The reactants have been exposed to H2O/H2SO4/HgSO4. In this reaction scenario, the acidic medium (H2SO4) and the water enact the role of a nucleophile and attack the alkene, thereby hydrating it.
The product of this reaction will be 2-butanol. Its formation is guided by Markovnikov's rule, which states that in the addition of a protic acid HX to an alkene, the acid hydrogen (H) becomes attached to the carbon with fewer alkyl substituents, and the halide (X) group becomes attached to the carbon with more alkyl substituents. This rule is why the hydroxyl group (-OH) attaches itself to the 2nd carbon atom in the major (predominant) product.
#SPJ3
Answer:
Structure is attached.
Explanation:
It is quite simple. The parent compound is benzaldehyde which is a benzene containing CHO functional group.
Now, starting numbering from CHO put methoxy (-OCH₃) groups at position 3 and 5.
b. Positive
c. Neither Negative nor positive
Answer:
There were 0.00735 moles Pb^2+ in the solution
Explanation:
Step 1: Data given
Volume of the KI solution = 73.5 mL = 0.0735 L
Molarity of the KI solution = 0.200 M
Step 2: The balanced equation
2KI + Pb2+ → PbI2 + 2K+
Step 3: Calculate moles KI
moles = Molarity * volume
moles KI = 0.200M * 0.0735L = 0.0147 moles KI
Ste p 4: Calculate moles Pb^2+
For 2 moles KI we need 1 mol Pb^2+ to produce 1 mol PbI2 and 2 moles K+
For 0.0147 moles KI we need 0.0147 / 2 = 0.00735 moles Pb^2+
There were 0.00735 moles Pb^2+ in the solution
Answer :
(a) The molecular equation will be,
(b) The complete ionic equation in separated aqueous solution will be,
(c) The net ionic equation will be,
Explanation :
In the net ionic equations, we are not include the spectator ions in the equations.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
(a) The molecular equation will be,
(b) The complete ionic equation in separated aqueous solution will be,
In this equation, are the spectator ions.
By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.
(c) The net ionic equation will be,