Answer:
The acceleration is 2.448 meters per square second and is vertically upward.
Explanation:
The Free Body Diagram of the plastic ball in the liquid is presented in the image attached below. By Second Newton's Law, we know that forces acting on the plastic ball is:
(1)
Where:
- Buoyant force, measured in newtons.
- Mass of the plastic ball, measured in kilograms.
- Gravitational acceleration, measured in meters per square second.
- Net acceleration, measured in meters per square second.
If we know that , and , then the net acceleration of the plastic ball is:
The acceleration is 2.448 meters per square second and is vertically upward.
Answer:
Product
Explanation:
Impulse is defined as the average force acting on an object times the time the force acts:
Impulse = F · Δt
pressure absolute = pressure gage + pressure atmosphere
Answer:
650.280
Explanation: 100kpa + 550.280kpa
Answer:
Fundamental frequency= 174.5 hz
Explanation:
We know
fundamental frequency=
velocity =
mass per unit length==0.00427
Now calculating velocity v=
=244.3
Distance between two nodes is 0.7 m.
Plugging these values into to calculate frequency
f = =174.5 hz
Answer:
av=0.333m/s, U=3.3466J
b.
Explanation:
a. let be the mass of block A, and be the mass of block B. The initial velocity of A,
-The initial momentum =Final momentum since there's no external net forces.
Relative velocity before and after collision have the same magnitude but opposite direction (for elastic collisions):
-Applying the conservation of momentum. The blocks have the same velocity after collision:
#Total Mechanical energy before and after the elastic collision is equal:
Hence, the maxumim energy stored is U=3.3466J, and the velocity=0.333m/s
b. Taking the end collision:
From a above,
We plug these values in the equation:
Answer:
The ratio of the model size is 1 : 2000
Explanation:
Given
Real Diameter = 0.012 um
Scale Diameter = 24 um
Required
Determine the scale ratio
The scale ratio is calculated as follows;
Substitute values for real and scale measurements
Divide the numerator and the denominator by 0012um
Represent as ratio
Hence, the ratio of the model size is 1 : 2000
The ratio of the model size to the actual size is 1 : 2000. This means the model represents the white blood cell's diameter 2000 times larger than its actual size.
The ratio of the model size to the actual size can be calculated using the given measurements:
Actual Diameter = 0.012 um
Model Diameter = 24 um
Ratio = Model Diameter / Actual Diameter
Ratio = 24 um / 0.012 um
Ratio = 2000
So, the ratio of the model size to the actual size is 1 : 2000. This means the model represents the white blood cell's diameter 2000 times larger than its actual size.
Learn more about white blood from the link given below.
#SPJ3
Answer:
E = 1.76 J
Explanation:
Given that,
Mass of an object, m = 0.4 kg
It moves by a vertical distance of 0.45 m in the Earth's gravitational field.
We need to find the change in its gravitational potential energy. It can be given by the formula as follow :
So, the change in its gravitational potential energy is 1.76 J.