Answer:
Geographically Widespread
Answer:
The formula for acceleration due to gravity at the surface of a celestial body is:
a = (G * M) / r^2
Where:
G (the gravitational constant) is approximately 6.67430 x 10^-11 m^3 kg^-1 s^-2.
M (the mass of Jupiter) is approximately 1.898 x 10^27 kilograms.
r (the mean radius of Jupiter) is approximately 71,492,000 meters.
Now, let's calculate it:
a = (6.67430 x 10^-11 m^3 kg^-1 s^-2 * 1.898 x 10^27 kg) / (71,492,000 meters)^2
a ≈ 24.79 m/s^2
So, the free-fall acceleration at the surface of Jupiter is approximately 24.79 m/s^2.
The free-fall acceleration on the surface of Jupiter (g) is calculated by using Newton's Universal Law of Gravitation (g = G * M / r^2), where G is the gravitational constant, M is the mass of Jupiter and r is the radius of Jupiter.
To calculate the acceleration due to gravity at the surface of Jupiter, we can use Newton's Universal Law of Gravitation. It states that the force of gravity is equal to the gravitational constant (G) times the mass of the body (in this case, Jupiter) divided by the radius of the body squared. The formula can be expressed as F = G * (M * m / r^2), where F is the force of gravity, G is the gravitational constant, M is the mass of the larger body (Jupiter), m is the mass of the smaller body (object in question), and r is the distance between the centers of the two bodies - which is the radius of Jupiter when the object is on its surface.
The formula to find the acceleration due to gravity (g) on the surface of Jupiter is found by setting the weight of an object (F = m*g) equal to the gravity force (F = G * (M * m / r^2)) leading to the cancellation of the mass of the object (m). That results in g = G * M / r^2. This means that the acceleration due to gravity on the surface of Jupiter depends on the mass of Jupiter and the radius of Jupiter, and not on the mass of the object.
#SPJ11
As you run toward a source of sound, you perceive the frequency of that sound to decrease.
Explanation:
Doppler's effect is a principle used to describe the frequency and the intensity of sound and wavelengths of a source and observer with the two possibilities.
(i) Stationary sound source and moving observer.
(ii) Moving sound source and a stationary observer. It is a relative motion.
Consider when the observer is moving towards a source, the frequency of the sound will be higher and when moving away from the source, the frequency will decrease.
frequency is the speed of vibration and this determines the pitch of the sound. it is only useful or meaningful for musical sounds. where there is a strongly regular waveform. frequency is measured as the number of wave cycles that occur in one second. the unit that is being measured is (hz)
B. Count the number of protons
C. Add the number of protons and neutrons
D. count the number of electrons