Answer:
A
Explanation:
be different about their atoms? (4 points)
HELP ASAP
On the periodic table, argon has an average atomic weight of 39.948 amu. This number is really near 40. This suggests that Ar-40 is the isotope of argon (Ar) that is most prevalent in the natural world.
If all three argon atoms are neutral, they would each contain 18 protons and 18 electrons. In comparison to one another, the three isotopes will each have a distinct number of neutrons (18, 20, and 22 neutrons respectively).
Atomic number, not atomic mass, is used to categorise the elements. As the atomic number of argon (18) is less than that of potassium (19)
To know more about periodic table visit:-
#SPJ1
Blue light is emitted when an electron in a He+ ion falls from the energy level n=4 to n=1. This is because the energy difference between these levels is similar to that in a hydrogen atom when blue light is emitted (from n=5 to n=2).
The energy of the emitted photon when an electron transitions between energy levels in an atom is determined by the difference between the energy levels it transitions between. This is described by the formula: E = hν, where E stands for energy, h stands for Planck's constant, and ν stands for frequency. The color of the emitted light, or the wavelength, is determined by the energy of the photon.
For blue light to be emitted when an excited electron falls from n=4 in a He+ ion, it must fall into n=1. This is because the energy gap between the n=4 and n=1 levels in a He+ ion is similar to that between the n=5 and n=2 levels in a hydrogen atom, which results in the emission of blue light.
#SPJ12
In a helium ion (He+), an electron would need to fall from n=4 to n=1 to emit a photon of blue light, similar to the photon emitted when an electron in a hydrogen atom falls from n=5 to n=2.
According to the Bohr model of atoms, when an electron falls from a higher to a lower energy level, a photon is emitted. The energy (and therefore color) of the photon corresponds to the energy difference between the two energy levels. In the case of your question, an excited electron in a hydrogen atom falls from n=5 to n=2 and emits a photon of blue light.
If an electron in an excited helium ion (He+) falls from the n=4 level, to emit a photon of similar energy (and thus color), it must fall to a level that yields a similar energy difference. Based on the energy levels of helium and hydrogen, the electron in the He+ ion would need to fall to n=1 to emit a photon of similar energy to the blue light from the hydrogen atom, given that the energy difference in He+ ion is larger than in hydrogen atom for the same quantum numbers due to its greater nuclear charge.
#SPJ11
(2) HCl
(3) HBr
(4) HI
HCl is the most polar bond, as greater the difference in electronegativity, the more polar the bond. Here, Chlorine is more electronegative than Hydrogen, Bromine, and Iodine, making the HCl bond most polar.
The most polar bond in the list provided is HCl. Polarity in bonds is determined by the difference in electronegativity between the two atoms in the bond. The greater the electronegativity difference, the more polar the bond. Chlorine (Cl) is more electronegative than Hydrogen (H), Bromine (Br), and Iodine (I), and so the bond between Cl and H is the most polar. The other three options (Cl2, HBr, HI) are either bonds between atoms of the same element (and therefore nonpolar because the electrons are shared equally) or are less polar due to the lower electronegativity difference.
#SPJ3
1. Double-Replacement reactions
2. Decomposition
3. Combustion
4. Syntesis
5. Single replacement
Given
Chemical equations
Required
Type of reaction
Solution
1. 2AgNO₃ + MgCl₂ ⇒ 2AgCl + Mg(NO₃)₂
Double-Replacement reactions. Happens if there is an ion exchange between two ion compounds in the reactant
2. 2KBr⇒2K +Br₂
Decomposition
Single compound breaks down in to 2 or more products
3. C₃H₈ + 5O₂ ⇒ 4H₂O + 3CO₂
Combustion
Hydrocarbon and Oxygen reaction and form water and carbon dioxide
4. NaO + H₂O ⇒ NaOH
Syntesis
2 or more reactants combine to form a single product
5. Zn + CuCl₂ ⇒ZnCl₂ + Cu
Single replacement
One element replaces another element from a compound
An alternative fuel, E-85, can be used in some automobiles. This fuel is a mixture of 85% ethanol and 15% gasoline.
State the octane rating of a gasoline sample that performs the same as a mixture consisting of 92% isooctane and 8% heptane.
Identify the functional group in a molecule of ethanol in the alternative fuel E-85.