Soil is an essential component of the earth's crust. It enabled life to exist andprovides the services necessary for human survival. What is the effect of soil
erosion? What will you do to protect the community?​

Answers

Answer 1
Answer:

Some of the effects of erosion on the environment includes :

  • Washing away of soil nutrients
  • Pollution of the waterways
  • Blockage of drainages
  • degradation of soil

Ways to protect the earth from soil erosion includes

  • planting of cover crops
  • Mulching
  • use of crush rocks on certain areas

Soli erosion is the washing away of the top soil of the earth's crust which can be caused by the movement of wind , water or ice over the surface of the earth crust. this action leads to the degradation of the soil

Soli erosion leads to the washing away of soil nutrients and the pollution of waterways because of the deposition of soil particles into the waterways.  the washed away soil can also block the drainages leading to a bigger problem ( flooding ).

Some of the steps that would help protect the soil from the effects of soil erosion are planting of cover crops , mulching and use of crush rocks on areas that are used most frequently to prevent the washing away of the soil.

Hence we can conclude that the effects of soil erosion are Washing away of soil nutrients , Pollution of the waterways, Blockage of drainages while ways to protect the earth from erosion are ;planting of cover crops, Mulching, use of crush rocks on certain areas

Learn more : brainly.com/question/24104585

Answer 2
Answer:

Answer:

The consequences of soil erosion go beyond the loss of fertile land. It has contributed to increased runoff and sedimentation in streams and rivers, clogging these waters and causing declines in fish and other animals.

We can protect the community from soil erosion by -:

  • Maintaining a good, perennial cover for plants.  
  • From mulching.  
  • Planting a crop for cover

Explanation:

SOIL EROSION -: The soil erosion mechanism is both natural and man-made. In nature, this refers to the removal of the top layer of soil caused by wind and water, while human activity may increase exposure to these elements.

MAJOR EFFECTS OF SOIL EROSION -:

  • Pollution and Low Water Quality -:Sedimentation is created by gradual soil erosion, a process by which rocks and minerals in the soil are separated from the soil and deposited elsewhere, often in streams and rivers. Soil contaminants, such as fertilizers and pest control agents, often settle in the streams and rivers to protect crops. Water contaminants contribute to low water quality, including drinking water quality, if the contaminants are not removed prior to ingestion. As sunlight can get through the sediment, sedimentation also leads to the excessive growth of algae. According to the World Wildlife Fund, high levels of algae drain too much oxygen from the water, resulting in the mortality of marine species and reduced fish stocks.
  • Structural Issues and Mudslides -:Soil erosion contributes to mudslides, impacting the stability of buildings and roadways and their structural integrity. Mudslides affect not only soil-supported structures, but also buildings and roads that are in the path of slides. Mudslides occur when, as a result of the intensity and energy of heavy rainfall, fine sand , clay, silt, organic matter and soil spill off the sides of hills and slopes. According to Envirothon, a program of the National Conservation Foundation and North America's largest high school environmental education competition, this runoff happens rapidly, because there is not enough time for the surface to reabsorb or catch the eroding soil.
  • Flooding and Deforestation -:Deforestation erodes soil — the removal of trees to create space for towns and agriculture. Trees help to maintain soil in place, so winds and rains drive the loose soil and rocks to streams and rivers when they are uprooted, resulting again in unnecessary sedimentation. The thick layers of sediment keep streams and rivers from flowing smoothly, ultimately contributing to flooding. Excess water, especially during rainy seasons and when the snow melts, gets trapped by the sediment and has nowhere to go except back on land.
  • The Deterioration of Soil -:Soil nutrient depletion is often the result of poorly performed cultivation and cultivation practices that contribute to soil erosion. For natural vegetation and agricultural purposes, excessive irrigation and obsolete tilling practices decrease the amount of nutrients in the soil and make it less fertile.

PROTECTION OF COMMUNITY FROM SOIL EROSION -

  • Maintaining a good, perennial cover for plants  -: Your perennial garden's care and upkeep need not be difficult or overwhelming. A blend of certain simple horticultural values with common sense and a good eye is a great part of good gardening.
  • MULCHING -:The amount of water that evaporates from your soil will be reduced by mulch, greatly reducing the need to water the plants. By breaking up clay and permitting better movement of water and air through the soil. Mulch supplements sandy soil with nutrients and enhances its ability to retain water.
  • PLANTING A  CROP FOR COVER -: Winter rye in vegetable gardens, for instance. This includes annual grasses, small grains , legumes and other forms of vegetation that have been planted to provide temporary vegetative cover. Cover crops are also often tilled as a 'green manure' crop under serving.

Related Questions

This is a pretty hard question. can someone help out?Correctly match the following vocabulary words with their definitions:1. _____. the phase change of a substance from the solid state directly to the gaseous state; for example, dry ice, moth balls, or solid air freshener2. _____. a form of energy transferred (by way of conduction, convection, or radiation) by virtue of a difference in temperature; heat is energy in transit; heat is energy flow, measured in energy units3. _____. matter with definite volume and definite shape4. _____. theory in physics based on the fact that particles of matter are in vigorous motion and that the temperature of a substance increases with an increase in either the average kinetic energy of the particles or the average potential energy of separation of the particles, or in both, when heat is added5. _____. a measure of how hot or cold something is; a measure of the average kinetic energy of the particles of a substance6. _____. matter with no definite volume or shape7. _____. the process by which a gas changes phase directly to a solid; for example, the formation of frost8. _____. a gaslike state of matter consisting of positively charged ions, free electrons, and neutral particles; found in stars, the sun, solar wind, lightning, and fire; unlike gases, plasmas are good conductors of electrical currents9. _____. net absorption of energy10. _____. the transfer of heat through matter by way of the collision of molecules11. _____. heat; energy transferred due to temperature differential that becomes associated with potential energy and kinetic energy on a molecular level12. _____. the process by which water vapor changes from gas to liquid13. _____. in a closed system in changing from one form to another, matter and energy cannot be created or destroyed; in this sense, conservation means that the physical quantity of matter and energy is entirely preserved during transformations and reactions14. _____. physical form of matter, such as solid, liquid, and gas; a distinct state of matter in a system; matter that is identical in chemical composition and physical state, and is separated from other material by the phase boundary; for example, the reaction occurs in the liquid phase of the system15. _____. the process by which water changes to water vapor16. _____. net release of energy17. _____. SI-derived unit to measure energy, work, and quantity of heat; for work, a joule is the amount of work done by a force of 1 N acting through 1 m; also newton-meter18. _____. matter with definite volume but no definite shape.WORDS.1. condensation2. conduction3. conservation4. depostion5. endothermic6. evaporation7. exothermic8. gas9. heat10. joule11. kinetic theory12. liquid13. phase14. plasma15. solid16. sublimation17. temperature18. thermal energy
All light travels at the same speed.O TrueO False
I need to find the answer for _ ML = 8,000,000 L
What is the pH of a 0.45 M solution of hydrochloride acid (H
Write the condensed ground-state electron configurations of these transition metal ions, and state which are paramagnetic:(a) V³⁺ (b) Cd²⁺ (c) Co³⁺ (d) Ag⁺

The amount of I − 3 ( aq ) in a solution can be determined by titration with a solution containing a known concentration of S 2 O 2 − 3 ( aq ) (thiosulfate ion). The determination is based on the net ionic equation 2 S 2 O 2 − 3 ( aq ) + I − 3 ( aq ) ⟶ S 4 O 2 − 6 ( aq ) + 3 I − ( aq ) Given that it requires 29.4 mL of 0.380 M Na 2 S 2 O 3 ( aq ) to titrate a 30.0 mL sample of I − 3 ( aq ) , calculate the molarity of I − 3 ( aq ) in the solution.

Answers

Answer:

The molarity of I₃⁻ (aq) solution: M₂ = 0.186 M

Explanation:

Given net ionic equation:  

2S₂O₃²⁻ (aq) + I₃⁻ ( aq ) ⟶ S₄O₆²⁻ (aq) + 3I⁻ (aq)

Number of moles of S₂O₃²⁻: n₁ = 2, Number of moles of I₃⁻: n₂ = 1

Given- For S₂O₃²⁻ solution: Molarity: M₁ = 0.380 M, Volume: V₁ = 29.4 mL;

For I₃⁻ (aq) solution: Molarity: M₂ = ? M, Volume: V₂ = 30.0 mL

         

To calculate the molarity of I₃⁻ (aq) solution, we use the equation:

(M_(1)V_(1))/(n_(1))=(M_(2)V_(2))/(n_(2))

((0.380 M)* (29.4 mL))/(2)=(M_(2)* (30.0 mL))/(1)

\Rightarrow M_(2) = ((0.380 M)* (29.4 mL))/((30.0 mL)* 2) = 0.186 M

Therefore, the molarity of I₃⁻ (aq) solution: M₂ = 0.186 M

What are some other things that have been engineered to help people deal with the effects of gravity?​

Answers

Answer: weight helps gravity

Explanation

for example, when you outside with the wind blowing, your weight dont let you get carried away.    

Final answer:

Technologies helping humans cope with gravity include methods to simulate weightlessness for training and entertainment, and prospective technologies suggested by general relativity theories like the gravity-based time machine. Studies on the gravity response in plants can also help sustain long-term space missions.

Explanation:

There are many technologies and methods designed to help humans cope with the effects of gravity. For example, astronauts on the International Space Station (ISS) experience gravity but appear weightless because they are in constant free fall around the Earth. This is akin to the principle of equivalence, which states that falling around the Earth creates the same effects as being far off in space, away from all gravitational influences.

Training facilities, like NASA's Vomit Comet, provide an environment for astronauts to experience a state of near-weightlessness or free fall, preparing them for their missions in space. Moreover, innovations such as underwater filming, wire stunts, and computer graphics can also mimic the appearance of weightlessness, as seen in movies such as Gravity and The Martian.

Also, findings related to gravity and time machines in general relativity suggest that it might be possible, in theory, to move through time using gravity. Meanwhile, studies on how plants respond to gravity might contribute to long-duration space missions by regenerating the atmosphere, purifying water, and producing food.

Learn more about Gravity here:

brainly.com/question/31321801

#SPJ2

How many lone pairs are on the central atom of BrF3?

Answers

According to the molecular geometry, there are two lone pairs on central atom of BrF₃.

What is molecular geometry?

Molecular geometry can be defined as a three -dimensional arrangement of atoms which constitute the molecule.It includes parameters like bond length,bond angle and torsional angles.

It influences many properties of molecules like reactivity,polarity color,magnetism .The molecular geometry can be determined by various spectroscopic methods and diffraction methods , some of which are infrared,microwave and Raman spectroscopy.

They provide information about geometry by taking into considerations the vibrational and rotational absorbance of a substance.Neutron and electron diffraction techniques provide information about the distance between nuclei and electron density.

Learn more about molecular geometry,here:

brainly.com/question/28557524

#SPJ2

Answer:

BrF3 has 2 lone pairs (4 unshared electrons)

Explanation:

5.0 liters of a gas are at an initial pressure of 5.0 atmospheres. If the temperature and amount of a gas are kept constant, what is the new volume of the gas when pressure is increased to 7.0 atmospheres?

Answers

Final answer:

Using Boyle's Law of gases which states that the pressure and volume of a gas have an inverse relationship when temperature is kept constant, we find that when the pressure of the gas increases from 5.0 to 7.0 atmospheres, the volume of the gas decreases to approximately 3.57 liters.

Explanation:

The question pertains to the application of Boyle's Law, a fundamental concept in the field of physics dealing with gases. Boyle's Law states that the pressure and volume of a gas have an inverse relationship when the temperature is held constant. This means if the pressure of a gas increases, the volume decreases, and vice versa.

In this case, you have 5.0 liters of a gas under an initial pressure of 5.0 atmospheres. The pressure is then increased to 7.0 atmospheres, and you are asked to determine the new volume of the gas. To solve this problem, we use the formula for Boyle's Law, which is P1V1 = P2V2. We know P1 (initial pressure) is 5.0 atmospheres and V1 (initial volume) is 5.0 liters. P2 (final pressure) is increased to 7.0 atmospheres and V2 (final volume) is what we are trying to find.

So, we plug the numbers into the equation and get: 5.0 atmospheres * 5.0 liters = 7.0 atmospheres * V2. Solving for V2, we find V2 to be approximately 3.57 liters. Therefore, when the pressure of the gas is increased from 5.0 atmospheres to 7.0 atmospheres, the volume decreases to around 3.57 liters, while the temperature remains constant.

Learn more about Boyle's Law here:

brainly.com/question/21184611

#SPJ12

Question 16 Unsaved Which of the following diagrams represents the correct cycling of gases?A) Photosynthesis O2 Respiration CO2
B) Respiration O2 photosynthesis CO2
C) Photosynthesis H2 Respiration O2
D) Respiration CO2 photosynthesis H2

Answers

the answer is A:

Photosynthesis release O2 (oxygen)

then animals use oxygen for respiration and release Co2

Final answer:

The correct answer is A) Photosynthesis O2 Respiration CO2. Photosynthesis converts CO2 to O2, which is then used in respiration to be converted back into CO2. Both processes together create a continuous cycle.

Explanation:

The correct diagram that represents the cycling of gases between photosynthesis and respiration is A) Photosynthesis O2 Respiration CO2. Through the process of photosynthesis, plants convert carbon dioxide (CO2) and sunlight into oxygen (O2) and glucose. Organisms, including the plants themselves, then use that oxygen for respiration, during which they convert the oxygen back into carbon dioxide. The glucose is used for energy. This continuous cycling plays a critical role in life on Earth.

Learn more about Cycling of gases here:

brainly.com/question/11267534

#SPJ3

If 6.81 mol of an ideal gas has a pressure of 2.99 atm and a volume of 94.35 L, what is the temperature of the sample?

Answers

Answer:

504.57 K.

Explanation:

From the question given above, the following data were obtained:

Number of mole (n) = 6.81 moles

Pressure (P) = 2.99 atm

Volume (V) = 94.35 L

Gas constant (R) = 0.0821 atm.L/Kmol

Temperature (T) =.?

Using the ideal gas equation, the temperature of the ideal gas can be obtained as follow:

PV = nRT

2.99 × 94.35 = 6.81 × 0.0821 × T

282.1065 = 0.559101 × T

Divide both side by 0.559101

T = 282.1065 / 0.559101

T = 504.57 K.

Thus, the temperature of the ideal gas is 504.57 K.