Answer: A. lipids
Explanation:
Lipids are responsible for energy storage. They can also provide thermal insulation in mammals and help them stay warm
states that volume occupied by a fixed quantity of a gas is directly proportional to the absolute temperature (Kelvin) at constant pressure.
Further Explanation:
Charles’s law:
Charles’s work showed that at constant pressure, the volume-temperature relationship for a fixed amount of gas is linear. In other words, Charles’s law can be stated that at constant pressure, the volume occupied by a fixed amount of a gas is directly proportional to its absolute temperature (Kelvin). This relationship is known as Charles’s law.
The mathematical representation of Charles’s law is,
[P and n are constant]
Where,
The relationship can also be expressed as,
[P and n are constant]
Or,
[P and n are constant]
Results of Charles’s law are as follows:
The volume (L) versus temperature (T) curve of Charles’s law is represented in the attached diagram.
Learn more:
1. Law of conservation of matter states: brainly.com/question/2190120
2. Calculation of volume of gas: brainly.com/question/3636135
Answer details:
Grade: Senior School
Subject: Chemistry
Chapter: Ideal gas of equation
Keywords: Charles’s law, volume, temperature, pressure, volume temperature relationship, absolute temperature, constant pressure, relationship, V directly proportional to T, ideal gas, ideal gas equation number of moles, moles.
Charles's Law states that the volume and absolute temperature of a fixed quantity of gas are directly proportional under constant pressure conditions
There are several gas equations in various processes:
PV = nRT
PV = NkT
N = number of gas particles
n = number of moles
R = gas constant (8,31.10 ^ 3 J / kmole K
k = Boltzmann constant (1,38.10 ^ -23)
n = = N / No
n = m / M
n = mole
No = Avogadro number (6.02.10 ^ 23)
m = mass
M = relative molecular mass
In the same temperature and pressure, in the same volume conditions, the gas contains the same number of molecules
So it applies: the ratio of gas volume will be equal to the ratio of gas moles
V1: V2 = n1: n2
2. Boyle's Law
At a fixed temperature, the gas volume is inversely proportional to the pressure applied
p1.V1 = p2.V2
When the gas pressure is kept constant, the gas volume is proportional to the temperature
V1 / T1 = V2 / T2
When the gas is heated in a tube whose volume does not change, the gas pressure in the tube is proportional to its absolute temperature
P1 / T1 = P2 / T2
Combined with Boyle's law and Gay Lussac's law
P1.V1 / T1 = P2.V2 / T2
P1 = initial gas pressure (N / m2 or Pa)
V1 = initial gas volume (m3)
P2 = gas end pressure
V2 = the final volume of gas
T1 = initial gas temperature (K)
T2 = gas end temperature
So the correct answer is Charles' Law, where at constant pressure, the volume of gas will be inversely proportional to its temperature
Identify all of the gas law equations that relate to the ideal gas law
the ideal gas law
equation agrees with the ideal gas law
2Na(s) + ZnF2(aq) + 2NaF(aq) + Zn(s)
O Fe(s) + CuCl2(aq) → FeCl2(aq) + Cu(s)
0 2HCl(aq) + Mg(s) → MgCl2(aq) + H2(g)
Answer: will not occur.
Explanation:
A single replacement reaction is one in which a more reactive element displaces a less reactive element from its salt solution. Thus one element should be different from another element.
A general single displacement reaction can be represented as :
a)
Flourine is more reactive than chlorine and hence this reaction cannot occur.
b)
Sodium is more reactive than zinc and hence the reaction will occur.
c)
Iron is more reactive than copper and hence the reaction will occur.
d)
Magnesium is more reactive than hydrogen and hence the reaction will occur.
important nutrients needed by fish in the aquatic
environment to survive.
Which scenarios may be explained by the facts on
the left? Check all that apply.
ID There is more dissolved oxygen in colder
waters than in warm water.
IM
Fact 2: Unlike solids, whose solubility increases
with increasing temperature, the solubility of gases
generally decreases with increasing temperature.
IND
There is less dissolved oxygen in colder
waters than in warm water.
Fish life in the ocean is more abundant during
the seaons with warmer water than seasons
with cooler water
HII
If ocean temperatures rise, then the risk to
the fish population increases.
DONE W
Answer:
A. There is more dissolved oxygen in colder waters than in warm water.
D. If ocean temperature rise, then the risk to the fish population increases.
Explanation:
Conclusion that can be drawn from the two facts stated above:
*Dissolved oxygen is essential nutrient for fish survival in their aquatic habitat.
*Dissolved oxygen would decrease as the temperature of aquatic habit rises, and vice versa.
*Fishes, therefore, would thrive best in colder waters than warmer waters.
The following are scenarios that can be explained by the facts given and conclusions arrived:
A. There is more dissolved oxygen in colder waters than in warm water (solubility of gases decreases with increase in temperature)
D. If ocean temperature rise, then the risk to the fish population increases (fishes will thrive best in colder waters where dissolved oxygen is readily available).
Answer: the answers are A and D
Explanation:
i got it right