There are two types of molecule in chemistry, one is polar molecule and other is non polar molecule. Therefore, among all the given option none is polar molecule. The correct option is option D.
A polar molecule is a type of chemical compound where there is an uneven distribution of electrons among the covalently bound atoms. The term "polarity" refers to how unlike two molecules' electrical poles are from one another. If they are quite dissimilar, the species is said to be a highly polar molecule.
Dipole moment tells about the extent of polarity in a molecule. It is measured in units of Debye. It can be calculated by multiplying charge and the separation between these two charges. Among all the given option none is polar molecule.
Therefore, among all the given option none is polar molecule. The correct option is option D.
To know more about polar molecule, here:
#SPJ2
the answer is none
Explanation:
Water
Water is the most polar molecule because a bond between oxygen and hydrogen has the most difference out of the atoms listed. Although the oxygen has two hydrogens bonded, this does not decrease the electronegativity of oxygen, but oxygen unfairly shares sets of electrons from both hydrogens, making it more polar still
Answer:
0.1 M
Explanation:
The overall balanced reaction equation for the process is;
IO3^- (aq)+ 6H^+(aq) + 6S2O3^2-(aq) → I-(aq) + 3S4O6^2-(aq) + 3H2O(l)
Generally, we must note that;
1 mol of IO3^- require 6 moles of S2O3^2-
Thus;
n (iodate) = n(thiosulfate)/6
C(iodate) x V(iodate) = C(thiosulfate) x V(thiosulfate)/6
Concentration of iodate C(iodate)= 0.0100 M
Volume of iodate= V(iodate)= 26.34 ml
Concentration of thiosulphate= C(thiosulfate)= the unknown
Volume of thiosulphate=V(thiosulfate)= 15.51 ml
Hence;
C(iodate) x V(iodate) × 6/V(thiosulfate) = C(thiosulfate)
0.0100 M × 26.34 ml × 6/15.51 ml = 0.1 M
To determine the moles of KIO_3 titrated, use the balanced equation 2 KIO_3 + 5 Na_2S_2O_3 + 6 HCl → 3 I_2 + 6 NaCl + 6 NaClO + 3 H_2O. Therefore, 0.001551 mol of KIO_3 were titrated.
To determine the moles of KIO3 titrated, we need to use the balanced equation for the reaction:
2 KIO3 + 5 Na2S2O3 + 6 HCl → 3 I2 + 6 NaCl + 6 NaClO + 3 H2O
From the equation, we can see that 2 moles of KIO3 react with 5 moles of Na2S2O3. Therefore, the moles of KIO3 titrated can be calculated using the following proportion:
(0.0100 M KIO3 / 1 L) * (15.51 mL / 1000 mL) * (2 mol KIO3 / 5 mol Na2S2O3) = 0.001551 mol KIO3
#SPJ12
would be produced from the
complete reaction of 83.7 g carbon
monoxide?
Fe2O3 + 3CO → 2Fe + 3CO2
131.6 grams of carbon dioxide would be produced from the complete reaction of 83.7 g carbon monoxide.
The balanced chemical equation is given below.
Fe2O3 + 3CO → 2Fe + 3CO2
Calculation,
Since, 28g of carbon dioxide produces 44g of carbon monoxide.
So, 83.7 g of carbon dioxide produces 44×83.7/28 grams
83.7 g of carbon dioxide produces 131.6 grams
The symbolic representation of chemical reaction in which reactant represents in left side and product represents in right side is called chemical equation.
To learn more about chemical equation here.
#SPJ3
Answer:131.6 g
Explanation:
(b) The boiling point of AsH₃ from the boiling points of PH₃ (- 87.4°C) and SbH₃ (-17.1°C) (actual value = -55°C)
Answer:
a) Approximate boiling point of HBr = -60.15 °C
b) Approximate boiling point of AsH₃ = -52.25 °C
Explanation:
Döbereiner stated that some elements could be arranged in groups of 3 similar elements ( known as "triads) , and the element of the middle ( elements are ordered with respect to their atomic mass) would have properties between the other 2 ( the average value)
a) In the first case the triad would be the halogen triad ( Cl , Br and I ) . And according to Döbereiner , the boiling point of HBr should be the average of HCl and HI . Therefore
Approximate boiling point of HBr = [(- 84.9°C) + (-35.4°C)]/2 = -60.15 °C
b) Simmilarly for AsH₃ , PH₃ and SbH₃ , the boiling point of AsH₃ would be
Approximate boiling point of AsH₃ = [(- 87.4°C) + (-17.1°C)]/2 = -52.25 °C
Some gravitational potential energy may have been gained.
B.
Some gravitational potential energy may have been lost.
C.
Some energy may have been gained due to friction and/or sound.
D.
Some energy may have been lost due to friction and/or sound.
Answer:
c
Explanation:
Answer:
Explanation:
H₂O(ℓ) ⟶ H₂O(g)
Data:
T = 25 °C
ΔG° = 8.6 kJ·mol⁻¹
Calculations:
T = (25 + 273.15) K = 298.15 K
Standard pressure is 1 bar.
61.8 % is the mass percentage of magnesium sulphate.
Explanation:
The mass percent of individual solute or ion in a compound is calculated by the formula:
Grams of solute ÷ grams of solute + solvent × 100
mass percent of magnesium is calculated as 1 mole of magnesium having 24.305 grams/mole will have weight of 24.305 grams and 1 mole of MgSO4 will have 120.366 grams
Putting the values in the equation:
24.305 ÷ 144.671 × 100
= 16.8% of magnesium is in the mixture
The mass percentage of SO4 is calculated as
= 96.06 ÷ 216.426 × 100
= 44.38 %
The mass percentage of the mixture MgSO4 is 44.38 + 16.8 = 61.8 %
Mass percentage is a representation of the concentration of element or elements in a compound.