Answer:
phototropism.
Answer:
Ribosomes link amino acids together in the order specified by the codons of messenger RNA molecules to form polypeptide chains. The function of ribosomes is to make proteins for the cell.
b) Give an example of an animal with radial symmetry and an example of an animal with bilateral symmetry.
Answer:
a. Sucrose is present in the plant cells that provide them energy and helps in the metabolic process of the plants. The pH of the plant cells will increase and their cellular environment becomes basic in nature. The uptake of sucrose is pH specific and the acidic condition in the environment allows the uptake of sucrose. The decrease in pH concentration in the environment increases the pH inside the cells.
b. The inhibitor of ATP inhibits the production and functioning of the ATP molecule. This effects the sucrose transport in the plant cells. As the sucrose movement requires the ATP and it is a active transport. The ATP inhibition decreases the sucrose uptake in the plant cells and the sucrose concentration decreases inside the plant cells.
Sucrose uptake in plant cells seems to require an acidic environment, brought about by the active transport of protons which requires ATP. An inhibitor of ATP regeneration would likely slow or stop this transport and, in turn, sucrose absorption.
The reported results suggest that the process of sucrose uptake in plant cells involves acidification of the surrounding medium prior to sucrose absorption. This can be explained by the proton-sucrose symport mechanism, in which protons (H+ ions) are actively pumped out of the cell in a process that requires ATP energy. When these protons combine with water (H2O) in the cell's environment, they form hydronium ions (H3O+), resulting in a lower pH or more acidic environment. Only after this acidic environment is established does sucrose uptake begin.
Based on this mechanism, introducing an inhibitor of ATP regeneration would be expected to decrease or halt this process, since ATP is required for the active transportation of protons. With less ATP, fewer protons will be pumped out, leading to a less acidic environment and, thus, lower sucrose uptake. This hypothesis is supported by how phosphofructokinase, a key enzyme in glycolysis (ATP production), is affected by low pH levels.
#SPJ3
Answer:
C- active B- diffusion A- facilitated
Explanation: