Answer:
ROYGBIV or Roy G
Explanation:
Thanks for the points!
I got 15.4 once and now I got 61.4? Are they correct? if so, which one?
To neutralize the KOH solution, we need 61.4 mL of 1.33 mol L−1 H2SO4(aq).
To find the volume of the H2SO4 solution needed to neutralize the KOH solution, we can use the equation:
Mole of H2SO4 = Molarity of KOH x Volume of KOH
First, calculate the moles of KOH:
Moles of KOH = Molarity of KOH x Volume of KOH = 0.830 mol/L x (49.3 mL / 1000 mL) = 0.04089 mol
Since H2SO4 is a diprotic acid and KOH is a strong base, the reaction will be:
H2SO4 + 2 KOH -> K2SO4 + 2 H2O
Therefore, the ratio between the moles of H2SO4 and KOH is 1:2. This means that twice the moles of KOH will be needed to neutralize the H2SO4. Calculate the moles of H2SO4 needed:
Moles of H2SO4 needed = 2 x Moles of KOH
= 2 x 0.04089 mol
= 0.08178 mol
Finally, calculate the volume of the H2SO4 solution needed:
Volume of H2SO4 = Moles of H2SO4 / Molarity of H2SO4 = 0.08178 mol / 1.33 mol/L
= 0.0614 L
= 61.4 mL
#SPJ1
We have to know whether F₂²⁺ is paramagnetic or diamagnetic.
F₂²⁺ is paramagnetic.
If number of unpaired electron in any species is equal to zero, the species is diamagnetic and the species contains unpaired electrons, then the species is paramagnetic.
The magnetic property can be explained using molecular orbital theory.
Total number of electron present in F₂²⁺ is equal to 16 (i.e, 9+9-2). From the molecular orbital electronic configuration, number of electrons present in pi orbitals present is equal to 2.
So, F₂²⁺ is paramagnetic.
Answer : is paramagnetic.
Explanation :
According to the molecular orbital theory, the general molecular orbital configuration will be,
As there are 9 electrons present in fluorine.
The number of electrons present in molecule = 2(9) - 2 = 16
The molecular orbital configuration of molecule will be,
Paramagnetic compounds : They have unpaired electrons.
Diamagnetic compounds : They have no unpaired electrons that means all are paired.
The number of unpaired electron in molecule is, 2. So, this is paramagnetic. That means, more the number of unpaired electrons, more paramagnetic.
Thus, is paramagnetic.
Answer:
pH at the equivalence point is 8.6
Explanation:
A titulation between a weak acid and a strong base, gives a basic pH at the equivalence point. In the equivalence point, we need to know the volume of base we added, so:
mmoles acid = mmoles of base
60 mL . 0.1935M = 0.2088 M . volume
(60 mL . 0.1935M) /0.2088 M = 55.6 mL of KOH
The neutralization is:
HBz + KOH ⇄ KBz + H₂O
In the equilibrum:
HBz + OH⁻ ⇄ Bz⁻ + H₂O
mmoles of acid are: 11.61 and mmoles of base are: 11.61
So in the equilibrium we have, 11.61 mmoles of benzoate.
[Bz⁻] = 11.61 mmoles / (volume acid + volume base)
[Bz⁻] = 11.61 mmoles / 60 mL + 55.6 mL = 0.100 M
The conjugate strong base reacts:
Bz⁻ + H₂O ⇄ HBz + OH⁻ Kb
0.1 - x x x
(We don't have pKb, but we can calculate it from pKa)
14 - 4.2 = 9.80 → pKb → 10⁻⁹'⁸ = 1.58×10⁻¹⁰ → Kb
Kb = [HBz] . [OH⁻] / [Bz⁻]
Kb = x² / (0.1 - x)
As Kb is so small, we can avoid the quadratic equation
Kb = x² / 0.1 → Kb . 0.1 = x²
√ 1.58×10⁻¹¹ = [OH⁻] = 3.98 ×10⁻⁶ M
From this value, we calculate pOH and afterwards, pH (14 - pOH)
- log [OH⁻] = pOH → - log 3.98 ×10⁻⁶ = 5.4
pH = 8.6
To calculate the pH at equivalence in a titration, we need to consider the concentration of the excess strong base in the solution. First, we calculate the moles of the acid and the base, then we find the moles of the excess base. Using this information, we can find the concentration of the excess base and subsequently calculate pOH. Finally, we can convert pOH to pH using the pH + pOH = 14 relationship.
pH at the equivalence point in a titration can be determined by considering the concentration of the excess strong base present in the reaction mixture. In this case, the excess strong base is KOH. We can calculate [OH-] using the stoichiometry of the reaction and the given concentrations. Then, we can find the pOH using the formula -log[OH-]. Finally, we can convert pOH to pH using the pH + pOH = 14 relationship.
Given:
Step 1: Determine the amount of benzoic acid (HC (H5CO2)) in moles:
moles of HC (H5CO2) = volume (L) × concentration (M) = 0.0600 L × 0.1935 M = 0.01161 mol
Step 2: Determine the amount of KOH in moles:
moles of KOH = volume (L) × concentration (M) = 0.0600 L × 0.2088 M = 0.01253 mol
Step 3: Determine the amount of excess KOH in moles:
moles of excess KOH = moles of KOH - moles required for neutralizing HC (H5CO2) = 0.01253 mol - 0.01161 mol = 9.2 × 10-4 mol
Step 4: Determine the concentration of excess KOH:
concentration of excess KOH = moles of excess KOH / volume (L) = 9.2 × 10-4 mol / 0.0600 L = 0.0153 M
Step 5: Determine the pOH of the solution:
pOH = -log[OH-] = -log(0.0153) ≈ 1.82
Step 6: Determine the pH of the solution:
pH = 14 - pOH = 14 - 1.82 ≈ 12.18
#SPJ3
The main issues of using synthetic polymers include toxicity poor biocompatibility etc. Synthetic polymers stay non-degradable for ling time and make the surface polluted.
Natural polymers are naturally made substances such as cellulose, starch, glycogen etc. Polymers made by man are called synthetic polymers. Synthetic polymers are diverse and are made through several polymerization techniques.
PVC, polyethylene, polyesters Teflon etc. are very common polymers in daily life. A major class of synthetic polymers include plastics which are major pollutants nowadays.
Most of the synthetic polymers are non-biodegradable and will cause landfill issues. Some them are toxic in nature and might cause several health issues. Blending them with biodegradable polymers is a solution for this.
Find more on synthetic polymers:
#SPJ2
Answer: As trash, Synthetic Polymers are not biodegradable. Landfills can easily fill up with synthetic polymers. Plastics can be made into different products. Recycling synthetic polymers is costly.
Explanation: Hope this helps in any way possible!
Answer:
Explanation:
idek