Answer:
A. 29.7 m/s
B. 6.06 s
Explanation:
From the question given above, the following data were obtained:
Maximum height (h) = 45 m
A. Determination of the initial velocity (u)
Maximum height (h) = 45 m
Acceleration due to gravity (g) = 9.8 m/s²
Final velocity (v) = 0 m/s (at maximum height)
Initial velocity (u) =.?
v² = u² – 2gh (since the ball is going against gravity)
0² = u² – (2 × 9.8 × 45)
0 = u² – 882
Collect like terms
0 + 882 = u²
882 = u²
Take the square root of both side
u = √882
u = 29.7 m/s
Therefore, the ball must be thrown with a speed of 29.7 m/s.
B. Determination of the time spent by the ball in the air.
We'll begin by calculating the time take to reach the maximum height. This can be obtained as follow:
Maximum height (h) = 45 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) to reach the maximum height =?
h = ½gt²
45 = ½ × 9. 8 × t²
45 = 4.9 × t²
Divide both side by 4.9
t² = 45/4.9
Take the square root of both side
t = √(45/4.9)
t = 3.03 s
Finally, we shall determine the time spent by the ball in the air. This can be obtained as follow:
Time (t) to reach the maximum height = 3.03 s
Time (T) spent by the ball in the air =?
T = 2t
T = 2 × 3.03
T = 6.06 s
Therefore, the ball spent 6.06 s in the air.
Answer:
the new depth is 2.3 ft
Explanation:
the solution is in the attached Word file
Answer:
a. 409.5 m/s b. f₁ = 136.5 Hz, f₂ = 409.5 Hz, f₃ = 682.5 Hz
Explanation:
a. The speed of sound v in a gas is v = √(B/ρ) where B = bulk modulus and ρ = density. Given that on Venus, B = 1.09 × 10⁷ N/m² and ρ = 65.0 kg/m³
So, v = √(B/ρ)
= √(1.09 × 10⁷ N/m²/65.0 kg/m³)
= √(0.01677 × 10⁷ Nm/kg)
= √(0.1677 × 10⁶ Nm/kg)
= 0.4095 × 10³ m/s
= 409.5 m/s
b. For a pipe open at one end, the frequency f = nv/4L where n = mode of wave = 1,3,5,.., v = speed of wave = 409.5 m/s and L = length of pipe = 75.0 cm = 0.75 m
Now, for the first mode or frequency, n = 1
f₁ = v/4L
= 409.5 m/s ÷ (4 × 0.75 m)
= 409,5 m/s ÷ 3 m
= 136.5 Hz
Now, for the second mode or frequency, n = 2
f₂ = 3v/4L
= 3 ×409.5 m/s ÷ (4 × 0.75 m)
= 3 × 409,5 m/s ÷ 3 m
= 3 × 136.5 Hz
= 409.5 Hz
Now, for the third mode or frequency, n = 5
f₃ = 5v/4L
= 5 × 409.5 m/s ÷ (4 × 0.75 m)
= 5 × 409,5 m/s ÷ 3 m
= 682.5 Hz
For every increase in mass, the gravitational force increases. Gravitational force is directly proportional to the mass of the object.
Gravitational force is the force by which an object attracts other objects into its center of mass. Earth attracts other objects gravitationally and that keep everyone stand to the ground.
Gravitational force directly proportional to the mass and inversely proportional to the distance between the objects. The expression relating the force and mass is written as:
g = G m/r²
Where G is the universal gravitational constant.
Therefore, as the mass of the object increase, the gravitational force exerted also increases. Similarly massive object experience more gravitation force by earth.
Find more on gravitational force:
#SPJ5
Answer:
Increases by the same amount.Increases by a factor of 4.
Explanation:
i took it
Answer: i think you should place it on the red line
Explanation:
hope this helps
and need brainliest
664.2 km=____cm
(664.2 km) · (1,000 m/km) · (100 cm/m) =
(664.2 · 1,000 · 100) (km·m·cm/km·m) =
66,420,000 cm
For metric conversion, you can remember this acronym for help:
King Henry died unusually drinking chocolate milk. Which stand for:
Kilo - unit * 1000
Hecto - unit * 100
Deca - unit * 10
Unit - unit * 1
Deci - unit *
Centi - unit *
Milli - unit *
Kilometers and centimeters are five places apart apart, so you move the decimal point in 664.2 to the right five times, which means 664.2 km = 66420000 cm.
To avoid confusion on which direction to move the decimal point, imagine two shapes on each end of a scale. On each end, there is one large shape and one small shape. There has to be one of each on either side for it to balance. For this problem, a kilometer is a larger unit than a centimeter, so this means that the blank space needs to have a number greater than 664.2, or else the scale won't balance. Hope this helped.
(B) If the acceleration of object moving along a line is always 0, then its velocity is constant.
(C) It is impossible for the instantaneous velocity at all times a(D) A moving object can have negative acceleration and increasing speed.
Answer:
Explanation:(A)if a body is accelerating then it's velocity can't be constant since an object is said to be accelerating if it is changing velocity (B)if the acceleration of an object moving along a line is 0 then it's velocity will be constant since there is no change in direction or speed(C)No.it is not possible for a moving body to have an instantaneous velocity at all times since instantaneous velocity is the velocity of a body at a certain instant of time..(D)Yes a moving object can have a negative acceleration and increasing speed,it can also have a positive acceleration with decreasing speed.