Answer:
v(t) = 21.3t
v(t) = 5.3t
Explanation:
When no sliding friction and no air resistance occurs:
where;
Taking m = 3 ; the differential equation is:
By Integration;
since v(0) = 0 ; Then C = 0
v(t) = 21.3t
ii)
When there is sliding friction but no air resistance ;
Taking m =3 ; the differential equation is;
By integration; we have ;
v(t) = 5.3t
iii)
To find the differential equation for the velocity (t) of the box at time (t) with sliding friction and air resistance :
The differential equation is :
=
=
By integration
Since; V(0) = 0 ; Then C = -48
Answer:
4 m/s^2
Explanation:
(0.5m/s * 4)+2 m/s
B. At the tip of a blade, what is the centripetal acceleration?
C. A big dog has a torso that is approximately circular, with a radius of 16cm . At the midpoint of a shake, the dog's fur is moving at a remarkable 2.5m/s .
D. What force is required to keep a 10 mg water droplet moving in this circular arc?
E. What is the ratio of this force to the weight of a droplet?
A) The speed of the tip of the blade is 76.2 m/s
B) The centripetal acceleration of the tip of the blade is
D) The force required to keep the droplet moving in circular motion is 0.39 N
E) The ratio of the force to the weight of the droplet is 4.0
Explanation:
A)
We know that the blade of the turbine is rotating at an angular speed of
First, we have to convert this angular speed into radians per second. Keeping in mind that
We get
The linear speed of a point on the blade is given by:
where
is the angular speed
r is the distance of the point from the axis of rotation
For a point at the tip of the blade,
r = 56 m
Therefore, its speed is
B)
The centripetal acceleration of a point in uniform circular motion is given by
where
v is the linear speed
r is the distance of the point from the axis of rotation
In this problem, for the tip of the blade we have:
v = 76. 2 m/s is the speed
r = 56 m is the distance from the axis of rotation
Substituting, we find the centripetal acceleration:
D)
The force required to keep the 10 mg water droplet in circular motion on the dog's fur is equal to the centripetal force experienced by the droplet, therefore:
where
m is the mass of the droplet
v is the linear speed
r is the distance from the centre of rotation
The data in this problem are
m = 10 mg = 0.010 kg is the mass of the droplet
v = 2.5 m/s is the linear speed
r = 16 cm = 0.16 m is the radius of the circular path
Substituting,
E)
The weight of the droplet is given by
where
m = 10 mg = 0.010 kg is the mass of the droplet
is the acceleration of gravity
Substituting,
The force that keeps the droplet in circular motion instead is
F = 0.39 N
Therefore, the ratio between the two forces is
Learn more about circular motion:
#LearnwithBrainly
How many bright-dark-bright fringe shifts are observed as the cell fills with air?
Answer:
55.3
Explanation:
The computation of the number of bright-dark-bright fringe shifts observed is shown below:
where
d =
n = 1.00028
Now placing these values to the above formula
So, the number of bright-dark-bright fringe shifts observed is
= 55.3
We simply applied the above formula so that the number of bright dark bright fringe shifts could come
Answer:
Explanation:
For refraction through a curved surface , the formula is as follows
μ₂ / v - μ₁ / u = (μ₂ -μ₁ )/R , Here μ₂( air) = 1 , μ₁ ( water) = 4/3 , R = 1.95 m
u , object distance = - .465 m
1 / v + 1.333 / .465 = (1 -1.333 )/1.95
1 / v + 2.8667 = - .171
1 / v = - 2.8667 - .171 = - 3.0377
v = - .3292 m
= - 32.92 cm
image will be formed in water.
c ) magnification = μ₁v / μ₂u , μ₁ = 1.33 , μ₂ = 1 , u = 46.5 , v = 32.92 .
= (1.33 x 32.92) / (1 x 46.5)
= .94
size of image of teeth = .94 x 5
= 4.7 cm .
False
Explanation:
A positive magnification means the image is erect compared to the object. Magnifications with values greater than one represent images that are smaller than the object. A magnification of 1 (plus or minus) means that the image is the same size as the object. If m has a magnitude greater than 1 the image is larger than the object, and an m with a magnitude less than 1 means the image is smaller than the object. If the magnification is positive, the image is upright compared to the object; if m is negative, the image is inverted compared to the object.
Answer:
(a) Fw = 101.01 N
(b) W = 282.82 J
(c) Fg = 382.2 N
(d) N = 368.61 N
(e) Net force = 0 N
Explanation:
(a) In order to calculate the magnitude of the worker's force, you take into account that if the ice block slides down with a constant speed, the sum of forces, gravitational force and work's force, must be equal to zero, as follow:
(1)
Fg: gravitational force over the object
Fw: worker's force
However, in an incline you have that the gravitational force on the object, due to its weight, is given by:
(2)
M: mass of the ice block = 39 kg
g: gravitational constant = 9.8m/s^2
θ: angle of the incline
You calculate the angle by using the information about the distance of the incline and its height, as follow:
Finally, you solve the equation (1) for Fw and replace the values of all parameters:
The worker's force is 101.01N
(b) The work done by the worker is given by:
(c) The gravitational force on the block is, without taking into account the rotated system for the incline, only the weight of the ice block:
The gravitational force is 382.2N
(d) The normal force is:
(e) The speed of the block when it slides down the incle is constant, then, by the Newton second law you can conclude that the net force is zero.