Answer:
His trip took 5.78 seconds
Explanation:
23.7m divided by 4.1m/s = 5.78048780488
La altura vertical máxima alcanzada es de 31,88 m.
Tenemos la siguiente información de la pregunta;
Velocidad inicial = 25 m/s
Velocidad final = 0 m/s (a la altura máxima)
tiempo empleado = 3,5 minutos (el tiempo empleado para subir y bajar es igual).
Usando la ecuación;
v^2 = u^2 - 2gh
Dado que v = 0
u^2 = 2gh
h = tu^2/2g
h = (25)^2/2 *9.8
h = 31,88 m
Obtenga más información sobre las ecuaciones de movimiento: brainly.com/question/8898885
The subject of this question is kinematics. The ball reached a height of 65.1 meters.
To determine the height that the ball reached, we can use the kinematic equation for vertical motion:
Final height = Initial height + Initial vertical velocity * Time + (1/2) * Acceleration * Time^2
In this case, the initial height is the height of the building, the initial vertical velocity is 25 m/s, the time is 7 seconds, and the acceleration is -9.8 m/s^2. Plugging in these values, we get:
Final height = 0 + 25 * 7 + (1/2) * (-9.8) * 7^2 = 0 + 175 - 240.1 = -65.1.
Since the ball is at ground level, the height it reached is the negative of the calculated value, so the correct answer is 65.1 m.
For more such questions on kinematics, click on:
#SPJ6
Answer:
29.5 m/s
Explanation:
Volumetric flowrate = (average velocity of flow) × (cross sectional area)
Volumetric flowrate = 0.111 liters/s = 0.000111 m³/s
Cross sectional Area of flow = πr²
Diameter = 0.00579 m,
Radius, r = d/2 = 0.002895 m
A = π(0.002895)² = 0.0000037629 m²
Velocity of flow = (volumetric flow rate)/(cross sectional Area of flow)
v = 0.000111/0.0000037629
v = 29.5 m/s
Given Information:
diameter of the nozzle = d = 5.79 mm = 0.00579 m
flow rate = 0.111 liters/sec
Required Information:
Velocity = v = ?
Answer:
Velocity = 4.21 m/s
Explanation:
As we know flow rate is given by
Flow rate = Velocity*Area of nozzle
Where
Area of nozzle = πr²
where
r = d/2
r = 0.00579/2
r = 0.002895 m
Area of nozzle = πr²
Area of nozzle = π(0.002895)²
Area of nozzle = 2.6329x10⁻⁵ m²
Velocity = Flow rate/area of nozzle
Divide the litters/s by 1000 to convert into m³/s
0.111/1000 = 1.11x10⁻⁴ m³/s
Velocity = 1.11x10⁻⁴/2.6329x10⁻⁵
Velocity = 4.21 m/s
Therefore, the water exit the nozzle at a speed of 4.21 m/s
Answer:
a) W = 25.872 J
b) - 35.28 J
c) - 9.408
Explanation:
a) The amount of work done by the force of gravity on the ball = Change in potential energy between the two vertical points = - mg (H₂ - H₁)
F = - mg (gravity is acting downwards)
F = - 0.6 × 9.8 = - 5.88 N
(H₂ - H₁) = (1.6 - 6) = - 4.4 m
W = (-5.88)(-4.4) = 25.872 J
b) Gravitational-potential energy of the ball when it was released relative to the ground = (- mg) H₁ = (- 0.6 × 9.8) × 6 = - 35.28 J
c) Gravitational-potential energy of the ball when it is caught relative to the ground = (-mg)(H₂) = -0.6 × 9.8 × 1.6 = - 9.408 J
Answer:
kinetic and potential energy
Explanation:
Answer:
3 min 55 sec is the solidification time if the cylinder height is doubled
7min 40 sec if the diameter is doubled
Explanation:
see the attachment
(B) If the acceleration of object moving along a line is always 0, then its velocity is constant.
(C) It is impossible for the instantaneous velocity at all times a(D) A moving object can have negative acceleration and increasing speed.
Answer:
Explanation:(A)if a body is accelerating then it's velocity can't be constant since an object is said to be accelerating if it is changing velocity (B)if the acceleration of an object moving along a line is 0 then it's velocity will be constant since there is no change in direction or speed(C)No.it is not possible for a moving body to have an instantaneous velocity at all times since instantaneous velocity is the velocity of a body at a certain instant of time..(D)Yes a moving object can have a negative acceleration and increasing speed,it can also have a positive acceleration with decreasing speed.