Answer:
10 g
Explanation:
Right from the start, just by inspecting the values given, you can say that the answer will be
10 g
.
Now, here's what that is the case.
As you know, a substance's specific heat tells you how much heat is needed to increase the temperature of
1 g
of that substance by
1
∘
C
.
Water has a specific heat of approximately
4.18
J
g
∘
C
. This tells you that in order to increase the temperature of
1 g
of water by
1
∘
C
, you need to provide
4.18 J
of heat.
Now, how much heat would be required to increase the temperature of
1 g
of water by
10
∘
C
?
Well, you'd need
4.18 J
to increase it by
1
∘
C
, another
4.18 J
to increase it by another
1
∘
C
, and so on. This means that you'd need
4.18 J
×
10
=
41.8 J
to increase the temperature of
1 g
of water by
10
∘
C
.
Now look at the value given to you. If you need
41.8 J
to increase the temperature of
1 g
of water by
10
∘
C
, what mass of water would require
10
times as much heat to increase its temperature by
10
∘
C
?
1 g
×
10
=
10 g
And that's your answer.
Mathematically, you can calculate this by using the equation
q
=
m
⋅
c
⋅
Δ
T
, where
q
- heat absorbed/lost
m
- the mass of the sample
c
- the specific heat of the substance
Δ
T
- the change in temperature, defined as final temperature minus initial temperature
Plug in your values to get
418
J
=
m
⋅
4.18
J
g
∘
C
⋅
(
20
−
10
)
∘
C
m
=
418
4.18
⋅
10
=
10 g
hydrogen atom forms covalent bonds with more than one atom.
hydrogen atom of a polarized molecule bonds with an electronegative atom
hydrogen atoms form an ionic bond with one other atom
Answer: hydrogen atom of a polarized molecule bonds with an electro negative atom.
Explanation:
Hydrogen bonds are special type of dipole dipole forces which are formed when hydrogen bonds with an electro negative element. Hydrogen bonds are strongest type of bonds .Example: Bond between Oxygen of one water molecule to the hydrogen of another water molecule as shown in the image below.
Covalent bonds are formed by sharing of electrons among non metals.
Ionic bond is formed by transfer of electrons between metals and non metals.
Answer:
No because hydrogen can only form these bonds with highly electronegative atoms.
Explanation:
When balancing the nuclear reaction, explain the following:
How does the Law of Conservation of Matter dictate what the daughter nuclide is?
How do we calculate the atomic mass and atomic number for the daughter nuclide?
Where do we look up what the new daughter nuclide element is?
The balanced nuclear reaction is 234/91 Pa -> 4/2 He + 230/89 Ac. You calculate the atomic mass and atomic number of the daughter nuclide by subtracting the atomic mass and atomic number of the alpha particle from the parent nuclide. Then, refer to the periodic table to identify the element with the corresponding atomic number.
The process described in the question is a typical alpha decay nuclear process. In this reaction, a Protactinium-234 nuclide emits an alpha particle (which is a Helium nucleus) to produce a new nuclide, the daughter nuclide.
According to the Law of Conservation of Matter, the sum of the mass and atomic numbers (protons + neutrons) of the reactants must equal the sum of the mass and atomic numbers of the products. This means we can calculate the atomic number and atomic mass of the daughter nuclide. The atomic mass would be the difference: 234 - 4 = 230. The atomic number would be the difference: 91 - 2 = 89.
After that, you can identify the new element by its atomic number, 89, from a periodic table, which shows it to be Actinium (89/230 Ac).
So, the balanced nuclear reaction is: 234/91 Pa -> 4/2 He + 230/89 Ac
#SPJ3
= outer core
= asthenosphere
= oceanic crust
= continental crust
The layers of the Earth, from lowest to highest density, are the Continental crust, Oceanic crust, Asthenosphere, Outer core, and Inner core.
The layers of the Earth can be ordered by density from lowest to highest as follows: Continental crust, Oceanic crust, Asthenosphere, Outer core, and Inner core.
The Continental crust being the top-most layer, has the lowest density, ranging between 2.2 to 2.9 g/cm³. Below that, the Oceanic crust has a slightly greater density at about 3.0 g/cm³.
Below these crust layers is the Asthenosphere, part of the upper mantle, with a density ranging between 3.2 and 3.3 g/cm³.
The denser Outer core lies beneath with a density ranging from 9.9 to 12.2 g/cm³. At the core of the Earth, the inner core has the highest density, ranging from 12.6 to 13.0 g/cm³.
For more such questions on density, click on:
#SPJ6
Answer:
the first is the inner core second is outer core third oceanic cruat fourth contenental crust fifth asthenosphere
b.Light bounces off surfaces.
c.Light travels in a curved path.
d.Light is made up of waves.
Answer : Option B) Light bounces off Surfaces.
Explanation : Zaccharias Janssen a scientist who was a spectacle maker, is considered to be the founder of a compound microscope; believed that the ray of light when focused on a reflecting surface bounces back. This was the main property of light which he discovered and which led him to a new innovation.
constant temperature until the reaction
PCl5(g) ⇀↽ PCl3(g) + Cl2(g)
comes to equilibrium. It is found that the
vessel contains 0.200 moles of PCl5. What is
the value of the equilibrium constant for the
reaction at this temperature?
2HCl yields H2 + Cl2
2K + 2HCl yields 2KCl + H2
SO3 + H2O yields H2SO4