Answer: C
Explanation:
Answer:
Explanation:
Fossil fuels are fuels that are formed by naturally processes leading to the formation of crude oil, coal and natural gas.
Scientists and engineers have used the energy from these fossil fuels to benefit the society by converting these fuels into consumable products for engines which are used for various daily life routine, such as transport (as in the case of the combustible engines in cars, trains, airplanes and ships), power generation (as in the case of gas turbines for power generation, petroleum or diesel for the engines of power generators) and even for home use in food processing (as in the case of cooking gas).
The chemical reaction mostly involved in this process especially in the case of engines is combustion reaction. Combustion reaction is an exothermic reaction in which an organic substance is burnt in excess oxygen to produce carbon dioxide. The energy conserved in this reaction (combustion reaction) is from stored potential energy (in the form of chemical energy) to thermal energy (which is the heat released when the hydrocarbon is burnt).
As mentioned earlier, one of the methods of using fossil fuels for energy is it's use in power generation by power generating sets (generators) and gas turbines. One advantage of using fossil fuel products for power generation is that it is cheaper than it's alternatives (such as solar power generation). However, one disadvantage of using fossil fuel products for power generation is that they release toxic gases/chemicals (such as carbon monoxide, CO, nitrogen oxides, NO and NO₂) into the atmosphere.
The energy in fossil fuels is harnessed and used mostly through the process of combustion which provides a high energy output but contributes negatively to the environment by increasing carbon dioxide levels.
Scientists and engineers harness and use energy in fossil fuels like coal, petroleum, and natural gas to benefit society in a number of ways, primarily through combustion. The combustion process is a chemical reaction whereby energy is released by burning these fuels amidst oxygen. This results in heat and energy, which is then converted to electricity and used for transportation, industrial production, and home heating purposes.
A common method is to burn these fuels, which in turn powers steam-driven turbines to produce electricity. The energy from the combustion of the fuels is transferred into mechanical work which is then converted into electrical energy. This process points to the principal of energy conservation which states that energy is neither created nor destroyed, but merely transformed from one form to another.
This method, however, has its pros and cons. On the positive side, fossil fuels are comparatively easy to extract, abundant, and provide a high energy output. But on the flip side, burning fossil fuels leads to environmental degradation by releasing carbon dioxide and contributing to global warming. Also, these fuels are non-renewable, and the resources are limited.
#SPJ3
Answer:
Explanation:
The preceding chapter introduced the use of element symbols to represent individual atoms. When atoms gain or lose electrons to yield ions, or combine with other atoms to form molecules, their symbols are modified or combined to generate chemical formulas that appropriately represent these species. Extending this symbolism to represent both the identities and the relative quantities of substances undergoing a chemical (or physical) change involves writing and balancing a chemical equation. Consider as an example the reaction between one methane molecule (CH4) and two diatomic oxygen molecules (O2) to produce one carbon dioxide molecule (CO2) and two water molecules (H2O). The chemical equation representing this process is provided in the upper half of Figure 1, with space-filling molecular models shown in the lower half of the figure.
In a balanced chemical equation, a subscript is a number to the right of an element indicating the number of atoms in a molecule. A coefficient is a number to the left of a formula indicating the number of molecules. Only coefficients should be altered when balancing equations.
In the context of a balanced chemical equation, a subscript is a number to the lower right of an element or ion within a formula and it applies to the number of atoms of that element in a molecule. A coefficient is a number placed to the left of a formula and it applies to the number of molecules of the entire substance. Only coefficients should be changed when balancing chemical equations because altering subscripts changes the substance itself.
The balanced chemical equation is a symbolic representation of a chemical reaction, where the number of each type of atom is equalized for both the products and reactants, in accordance with the law of conservation of matter.
For example, in the equation 2H₂O, the subscript '2' to the right of 'H' shows that there are two hydrogen atoms in one water molecule, and the coefficient '2' to the left of 'H₂O' means there are two molecules of water, totaling four hydrogen atoms.
#SPJ2
Answer: The value of equilibrium constant for the net reaction is 11.37
Explanation:
The given chemical equations follows:
Equation 1:
Equation 2:
The net equation follows:
As, the net reaction is the result of the addition of first equation and the reverse of second equation. So, the equilibrium constant for the net reaction will be the multiplication of first equilibrium constant and the inverse of second equilibrium constant.
The value of equilibrium constant for net reaction is:
We are given:
Putting values in above equation, we get:
Hence, the value of equilibrium constant for the net reaction is 11.37
Answer:
1. 2Al + 3I2 —> Al2I6
2. 0.555mol of I2
Explanation:
1. Al + I2 —> Al2I6
Observing the above equation, there are 2 atoms of Al on the right side and 1 on the left side. To balance it, put 2 in front of Al as shown below:
2Al + I2 —>Al2I6
Also, there are 6 atoms of I on the right side and 2 on the left side. To balance it, put 3 in front I2 as shown below:
2Al + 3I2 —>Al2I6
2. Molar Mass of Al = 27g/mol
Mass of Al = 10g
n = Mass /Molar Mass
n = 10/27 = 0.37mol
From the equation,
2moles of Al reacted with 3 moles of I2.
Therefore, 0.37mol of Al will react with = (0.37 x 3)/2 = 0.555mol of I2
The balanced chemical equation is:
2 Al(s) + 3 I₂(s) → Al₂I₆(s)
0.557 moles of iodine react with 10.0 g of aluminum.
Let's consider the following unbalanced equation.
Al(s) + I₂(s) → Al₂I₆(s)
We will balance it using the trial and error method. We can get the balanced equation by multiplying Al by 2 (balance Al atoms) and I₂ by 3 (balance I atoms).
2 Al(s) + 3 I₂(s) → Al₂I₆(s)
The molar mass of Al is 26.98 g/mol. The moles corresponding to 10.0 g of Al are:
The molar ratio of Al to I₂ is 2:3. The moles of I₂ that react with 0.371 moles of Al are:
The balanced chemical equation is:
2 Al(s) + 3 I₂(s) → Al₂I₆(s)
0.557 moles of iodine react with 10.0 g of aluminum.
You can learn more about stoichiometry here: brainly.com/question/9743981
Answer:
K.E. = 5.4362 × 10⁻¹⁹ J
Explanation:
The expression for Bohr velocity is:
Applying values for hydrogen atom,
Z = 1
Mass of the electron () is 9.1093×10⁻³¹ kg
Charge of electron (e) is 1.60217662 × 10⁻¹⁹ C
= 8.854×10⁻¹² C² N⁻¹ m⁻²
h is Plank's constant having value = 6.626×10⁻³⁴ m² kg / s
We get that:
Given, n = 2
So,
Kinetic energy is:
So,
K.E. = 5.4362 × 10⁻¹⁹ J
Answer:
Redox reactions involve an oxidation reaction coupled with a reduction reaction.
Explanation:
A redox reaction is called like that because it involves a substance that is reducing and a substance that is oxidating, so it is Re-dox, this means that all of the chemicals reactions that involve a substance that looses an electron, are redox reactions, they are present in almost all of chemistry, from syntetic to biological chemistry, so the only correct option would be:
Redox reactions involve an oxidation reaction coupled with a reduction reaction.
Answer: An oxidation reaction is defined as the when in a reaction the oxidation number of a species involved increased, and reduction reaction is reversed, it when the oxidation number of a species is decreased. And a redox reaction is in which both of oxidation and reduction reaction takes place simultaneosly. Because chemical reaction follows the law of conservation of mass.