What is the mass in grams of H₂ that can be formed from 54.6 grams of NH₃ in the following reaction?2 NH₃(g) → 3 H₂(g) + N₂(g)

Answers

Answer 1
Answer:

9.6 grams of H₂ can be formed from 54.6 grams of NH₃ in the following reaction: 2NH₃(g) → 3H₂(g) + N₂(g).

  • According to this question, the following balanced equation is given: 2NH₃(g) → 3H₂(g) + N₂(g).

  • First, we convert the mass of ammonia (NH3) to moles as follows:

  • moles of NH3 = 54.6g ÷ 17g/mol

  • moles of NH3 = 3.2mol.

  1. If 2 moles of NH3 produces 3 moles of H2.
  2. 3.2 moles of NH3 will produce 4.8 moles of H2.

  • Next, we convert 4.8moles of H2 to mass as follows:

  • mass of H2 = 4.8 × 2

  • mass of H2 = 9.6g of H2.

  • Therefore, 9.6 grams of H₂ can be formed from 54.6 grams of NH₃ in the following reaction: 2NH₃(g) → 3H₂(g) + N₂(g).

Learn more at: brainly.com/question/8732513?referrer=searchResults

Answer 2
Answer:

Answer : The mass of H_2 is, 9.64 grams.

Explanation : Given,

Mass of NH_3 = 54.6 g

Molar mass of NH_3 = 17 g/mol

Molar mass of H_2 = 2 g/mol

First we have to calculate the moles of NH_3.

\text{Moles of }NH_3=\frac{\text{Given mass }NH_3}{\text{Molar mass }NH_3}

\text{Moles of }NH_3=(54.6g)/(17g/mol)=3.21mol

Now we have to calculate the moles of H_2

The balanced chemical equation is:

2NH_3(g)\rightarrow 3H_2(g)+N_2(g)

From the balanced reaction we conclude that

As, 2 mole of NH_3 react to give 3 moles of H_2

So, 3.21 mole of NH_3 react to give (3)/(2)* 3.21=4.82 mole of H_2

Now we have to calculate the mass of H_2

\text{ Mass of }H_2=\text{ Moles of }H_2* \text{ Molar mass of }H_2

\text{ Mass of }H_2=(4.82moles)* (2g/mole)=9.64g

Therefore, the mass of H_2 is, 9.64 grams.


Related Questions

A Carbon-10 nucleus has 6 protons and 4 neutrons. Through radioactive beta decay, it turns into a Boron-10 nucleus, with 5 protons and 5 neutrons, plus another particle. What kind of additional particle, if any, is produced during this decay
Joan has four containers. The chart below shows the mass and volume of each of the containers. Two of the containers are filled with solids, one is filled with a liquid, and one is filled with a gas.
Identify each element below, and give the symbols of the other elements in its group. a. [Ar] 4s23d104p4 b. [Xe] 6s24f145d2 c. [Ar] 4s23d5.
How did Mendeleev come up with the first periodic table of the elements? (1 point)A He determined the mass of atoms of each element.B He estimated the number of electrons in atoms of each element.C He arranged the elements by different properties to find a pattern.D He organized the elements by their atomic number.​
G write the symbols for the cation and anion that make up each ionic compound Co(NO3)2

Water flows over Niagara Falss at the average rate of 2,400,000 kg/s, and the average height of the falls is about 50 m. Knowing that the graviatational potential energy of falling water per second = mass (kg) x height (m) x gravity (9.8 m/s2), what is the power of Niagara Falls? How many 15 W LED light bulbs could it power?

Answers

Answer:

1. 176 × 10^12 W ; 78400000000

Explanation:

Given the following :

Fall rate = 2,400,000kg/s

Average height of fall = 50m

Gravitational Potential of falling water = mgh = mass × acceleration due to gravity × height =

How many 15 W LED light bulbs could it power?

Recall : power = workdone / time

Workdone = gravitational potential energy

Mass of water = density * volume

Density of water = 1 * 10^3kg/m^3

Rate of fow = volume / time = 2400000

Hence,

Power = 1000 * 2,400,000 * 9.8 * 50

Power = 1176000000000

Power = 1. 176 × 10^12 W

How many 15 W LED light bulbs could it power?

1176000000000 / 15 = 78400000000

= 78400000000 15 W bulbs

Name the physical properties used in seperating kerosene and petrol

Answers

step by step explanation

simple distillation can be used when the temperature difference between the boiling points of two miscible liquid is at least 25°c. the temperature difference between the boiling points of kerosene and petrol is 25c. hence, this mixture can separated using simple distillation.

answer:

simple distillation

If 4.0 mol aluminum and 7.0 mol hydrogen bromide react according to the following equation, how many moles of hydrogen are formed and what is the limiting reactant?

Answers

Answer:

Moles of hydrogen formed = 3.5 moles

Explanation:

Given that:-

Moles of aluminium= 4.0 mol

Moles of hydrogen bromide = 7.0 mol

According to the reaction:-

2Al_((s))+6HBr_((aq))\rightarrow 2AlBr_3_((aq))+3H_2_((g))

2 moles of aluminum react with 6 moles of hydrogen bromide

1 mole of aluminum react with 6/2 moles of hydrogen bromide

4 moles of aluminum react with (6/2)*4 moles of hydrogen bromide

Moles of hydrogen bromide = 12 moles

Available moles of hydrogen bromide = 7.0 moles

Limiting reagent is the one which is present in small amount. Thus, hydrogen bromide is limiting reagent. (7.0 < 12)

The formation of the product is governed by the limiting reagent. So,

6 moles of hydrogen bromide on reaction forms 3 moles of hydrogen

1 moles of hydrogen bromide on reaction forms 3/6 moles of hydrogen

7 moles of hydrogen bromide on reaction forms (3/6)*7 moles of hydrogen

Moles of hydrogen formed = 3.5 moles

Answer:

3.5 mol H2, HBr (limiting reactant)

Explanation:

4.0 mol Al × 3 mol H2/ 2 mol Al = 6.0 mol H2

7.0 mol HB ×3 mol H2/ 6mol HBr = 3.5 mol H2

Since 7.0mol of HBr will produce less H2 than 4.0mol of Al, HBr will be the limiting reactant, and the reaction will produce 3.5mol of H2.

To what volume (in mL) would you need to dilute 20.0 mL of a 1.40 M solution of LiCN to make a 0.0880 M solution of LiCN?

Answers

Answer:

To 318.18 mL would you need to dilute 20.0 mL of a 1.40 M solution of LiCN to make a 0.0880 M solution of LiCN

Explanation:

Dilution is the reduction of the concentration of a chemical in a solution and consists simply of adding more solvent.

In a dilution the amount of solute does not vary. But as more solvent is added, the concentration of the solute decreases, as the volume (and weight) of the solution increases.

In a solution it is fulfilled:

Ci* Vi = Cf* Vf

where:

  • Ci: initial concentration
  • Vi: initial volume
  • Cf: final concentration
  • Vf: final volume

In this case:

  • Ci= 1.40 M
  • Vi= 20 mL
  • Cf= 0.088 M
  • Vf= ?

Replacing:

1.40 M* 20 mL= 0.088 M* Vf

Solving:

Vf=(1.40 M* 20 mL)/(0.088 M)

Vf= 318.18 mL

To 318.18 mL would you need to dilute 20.0 mL of a 1.40 M solution of LiCN to make a 0.0880 M solution of LiCN

Final answer:

To make a 0.0880 M solution of LiCN, you would need to dilute 20.0 mL of the 1.40 M solution to a final volume of 318.18 mL.

Explanation:

To dilute a solution, you can use the formula:

M1V1 = M2V2

where M1 and V1 are the initial molarity and volume, and M2 and V2 are the final molarity and volume. Rearranging the formula, we can solve for V2:

V2 = (M1 · V1) / M2

Plugging in the values given:

V2 = (1.40 M · 20.0 mL) / 0.0880 M = 318.18 mL

To make a 0.0880 M solution of LiCN, you would need to dilute 20.0 mL of the 1.40 M solution to a final volume of 318.18 mL.

Learn more about Dilution here:

brainly.com/question/35454012

#SPJ3

What type of compound is disulfur dichloride?a. organic compound
b. acid (ionic compound)
c. covalent compound
d. ionic compound

Answers

Answer:

Covalent compound

Explanation:

It is formed by covalent bonds, in which the atoms share a pair of valence electrons

An 18-karat gold necklace is 75% gold by mass, 16% silver, and 9.0% copper.A. What is the mass, in grams, of the necklace if it contains 0.24 Oz of silver?
B. How many grams of copper are in the necklace.?
C. If the 18- karat gold has a density of 15.5g/cm^3, what is the volume in cubic centimeters?

Answers

B. How many grams of copper are in the necklace.?
I think that the answer would be option B.