Answer: Yes
Explanation:
Density of a liquid depend on its volume. This is because Density is mass of liquid divided by volume.
Density is inversely proportional to volume.
As density increases, volume decreases and vice versa. The density for water is 1g/ milliliter but it changes with changes in temperature or there are impurities dissolved in it. Ice is less dense that liquid water and it's the major reason it's float because it's volume is inversely proportional to it's density.
What is the molarity?
Answer: The concentration of is 0.0122 M.
Explanation:
To calculate the concentration of base, we use the equation given by neutralization reaction:
where,
are the n-factor, molarity and volume of acid which is
are the n-factor, molarity and volume of base which is
We are given:
Putting values in above equation, we get:
Hence, the concentration of is 0.0122 M.
b. Isotope 48Ti Abundance 10.000% Mass(amu) 47.94795
c. Isotope 50Ti Abundance 19.100% Mass(amu) 49.94479
d. What is the average atomic mass of titanium on that planet?
e. I got 46.9 amu but it is wrong.
Answer:
Average atomic mass = 46.91466 amu
Explanation:
Step 1: Data given
Isotopes of titanium
46Ti = 70.900% ⇒ 45.95263 amu
48Ti = 10.000 % ⇒ 47.94795 amu
50Ti = 19.100 % ⇒ 49.94479 amu
Step 2: Calculate the average atomic mass of titanium
Average atomic mass = 0.7090 * 45.95263 + 0.10 * 47.94795 + 0.1910 * 49.94479
Average atomic mass = 46.91466 amu
Answer:
Explanation:
When an electron moves from a lower energy level to a higher energy level, energy is absorbed by the atom. When an electron moves from a higher to a lower energy level, energy is released and photon is emitted.
this emitted photon is depicted as a small wave-packet being expelled by the atom in a well-defined direction.
fluorate
nitrogen
nitrite
Could you explain how to find this? The process?
Answer:
the answer is nitrogen
b. They contain a carbonyl group with a nonpolar carbon-oxygen bond.
c. The functional group of this type of compound must always be on the end of a carbon chain.
d. The functional group of this type of compound must always be in the middle of a carbon chain.
Answer:
Option d.
Explanation:
Ketones contain a carbonyl groups as a functional group, which is a carbon bonded to oxygen with a double bond. In a ketone, the carbon is always bonded to two carbon atoms:
R-C(=O)-R'
The carbon in the carbonyl group has a hybridization sp2 (3 hybrid orbitals with an unhybridized p orbital), where two of the orbitals form sigma (σ) bonds with the other two carbons (R-C-R') and the other hybrid orbital form a sigma bond with the oxygen (C-O). The unhybridized p orbital on the carbon atom is used to form a pi (π) bond with the oxygen, thus forming the double bond (C=O).
The bond of a carbonyl group is polar, because of the difference of the electronegativity between the carbon atom and the oxygen atom.
Hence, from all of the above we can discard the option a, (the carbonyl groups exhibits sp2 hybridization), the option b (carbon-oxygen bond is a bond polar) and the option c (the group must always be in the middle of a carbon chain, the groups that are always in the end, are a aldehyde groups).
Therefore, the correct option is d, the functional group of this type of compound must always be in the middle of a carbon chain.
I hope it helps you!
Answer:
d. The functional group of this type of compound must always be in the middle of a carbon chain.
Explanation:
(B) Ca3PO6
(C) Ca4P2O4
(D) Ca3P2O8 (or Ca3(PO4)2)
(E) CaPO4
Answer:
D) empirical formula is: C₃P₂O₈
Explanation:
Given:
Mass % Calcium (Ca) = 38.7%
Mass % Phosphorus (P) = 19.9%
Mass % oxygen (O) = 41.2 %
This implies that for a 100 g sample of the unknown compound:
Mass Ca = 38.7 g
Mass P = 19.9 g
Mass O = 41.2 g
Step 1: Calculate the moles of Ca, P, O
Atomic mass Ca = 40.08 g/mol
Atomic mass P = 30.97 g/mol
Atomic mass O = 16.00 g/mol
Step 2: Calculate the molar ratio
Step 3: Calculate the closest whole number ratio
C: P: O = 1.50 : 1.00 : 4.00
C : P : O = 3:2:8
Therefore, the empirical formula is: C₃P₂O₈
The mass percentage composition of a compound can be used to determine its empirical formula. For a compound with 38.7% calcium (Ca), 19.9% phosphorus (P), and 41.2% oxygen (O), the empirical formula is Ca3(PO4)2.
To solve this problem, we're going to use the atomic mass percentages to determine the empirical formula of the compound.
We do this by assuming we have a 100g sample of the compound. Therefore:
The mass of calcium (Ca) is 38.7g.
The mass of phosphorus (P) is 19.9g.
The mass of oxygen (O) is 41.2g.
Next, we calculate how many moles we have of each element:
Then, we divide each of these numbers by the smallest number of moles, which is 0.643 (P):
#SPJ3