Answer:
Please find the answer in the explanation
Explanation:
When you calculate the SLOPE of a line segment, what does the SLOPE represent? (Choose all that apply) the Distance traveled the Displacement the Velocity the Acceleration None of the above
The slope of any time graph can not give you distance or displacement except for position - time graph.
When you plot either distance or displacement against time, that is, distance time graph or displacement time graph, you can get speed or velocity as the slope of the line segment.
You can only acceleration as a slope in a line of best fit if velocity is plotted against time. That is, in a velocity time graph.
B-19.5 m/s
C-28 m/s
D-21.5 m/s
If the velocity of a body changes from 13 m/s to 30 m/s while undergoing constant acceleration, the average velocity of the body is 21.5 m/s. the answer is letter D. Velocity is a vector quantity and average velocity can be defined as the sum of the initial and final velocity divided by 2 at constant acceleration.
The Correct answer to this question for Penn Foster Students is: 21.5 m/s
A) The temperature at the fat-inner fur boundary be so that the bear loses heat at a rate of 51.4W is; T_i = 38.52°C
B) The thickness of the layer contained within the fur so that the bear loses heat at a rate of 51.4 W is; t = 13.41 cm
We are given;
Diameter of sphere; d = 1.6 m
Radius of sphere; r = d/2
r = 1.6/2
r = 0.8 m
Thickness of bear; t = 3.9 cm cm = 0.039 m
Outer surface Temperature of fur; T_h = 2.8 ∘C
Inner surface Temperature of fat;T_f = 30.9 ∘C
Thermal conductivity of fat; K_f = 0.2 W/m⋅k
Thermal conductivity of air; K_a = 0.024 W/m⋅k
A) To find the temperature at the fat-inner fur boundary when heat loss is 51.4 W, we will use the heat current formula;
H = K_f•A(T_f - T_i)/t
Where;
A is area = 4πr²
A = 4π × 0.8²
A = 8.04 m²
T_i is the temperature we are looking for
H is heat loss = 51.4
t is thickness
Making T_i the subject gives;
T_i = (T_f × H × t)/(K_f × A)
T_i = (30.9 × 51.4 × 0.039)/(0.2 × 8.04)
T_i = 38.52°C
B) We want to find the thickness of the layer contained within the fur. Thus, we will use K_a instead of K_f. Let us make t the subject in the heat current formula to get;
t = (K_a•A(T_i - T_h)/H
t = (0.024 × 8.04 × (38.52 - 2.8))/51.4
t = 0.1341 m
t = 13.41 cm
Read more at; brainly.com/question/14548124
Answer:
Explanation:
Using the equation
H = Q/t = k A ( T hot - T cold) / L
where H is the rate of heat loss = 51.4 W, T cold be temperature of the outer surface, A is the surface area of the fat layer which is a model of sphere ( surface area of a sphere ) = 4πr² where diameter = 1.60 m
radius = 1.60 m / 2 = 0.80 m
A = 4 × 3.142 × ( 0.8²) = 8.04352 m²
making T cold subject of the formula
T cold = T hot - = 30.9° C - ( 51.4 W × 3.9 × 10⁻² m) / ( 0.2 W/mK × 8.04352 m² ) = 30.9° C - 1.25 ° C = 29.65° C
b) The thickness of air layer for the bear to lose heat t a rate of 51.4 W
thermal conductivity of air is 0.024 W/mK and rearranging the earlier formula
L = = (0.024 W/ m K × 8.04352 m²) ( 29.65° C - 2.8°C) / 51.4 W = 0.101 m = 10.1 m
Answer: hello options related to your question is missing attached below is the missing part of your question
answer: No charge of the length of the bonds expected because the rod did not touch the charge source ( option A )
Explanation:
When the Charge is first, Furthest away and second and closest to the source charge. The spring like bonds can be said to have No charge of the length of the bonds expected because the rod did not touch the charge source when Furthest away the bond with charge will be less effective
Answer:
Gamma > Beta > Alpha
Explanation: