A squirrel is running a race where she is on track for her average velocity to be 6.0 m/s. She is distracted by a dummy of an attractive male squirrel and pauses for 3.0 s. As a result her average velocity ends up being 5.0 m/s instead. What is the length of the race? [HINT: construct two equations with the same two unknowns in them and you can solve the system of equations]

Answers

Answer 1
Answer:

Answer:

90 m

Explanation:

There are two unknowns: the amount of time the squirrel spent running, and the length of the race.  Let's call these t and x, respectively.

The average velocity is the total distance divided by the total time.

5.0 m/s = x / (t + 3.0)

The total distance is the time she spent running times the speed she ran at.

x = (6.0 m/s) t

Substitute and solve:

5 = 6t / (t + 3)

5 (t + 3) = 6t

5t + 15 = 6t

t = 15

She ran for 15 seconds (not including the 3 seconds she stopped).  So the length of the race is:

x = (6.0 m/s) (15 s)

x = 90 m


Related Questions

A proton is moving horizontally halfway between two parallel plates that are separated by 0.60 cm. The electric field due to the plates has magnitude 720,000 N/C between the plates away from the edges. If the plates are 5.6 cm long, find the minimum speed of the proton if it just misses the lower plate as it emerges from the field.
At the instant the traffic light turns green, a car that has been waiting at an intersection starts ahead with a constant acceleration of 3.60 m/s^2 . At the same instant a truck, traveling with a constant speed of 23.5 m/s , overtakes and passes the car. a. How far beyond its starting point does the car overtake the truck?b. How fast is the car traveling when it overtakes the truck?
At the normal boiling temperature of iron, TB = 3330 K, the rate of change of the vapor pressure of liquid iron with temperature is 3.72 x 10-3 atm/K. Calculate the molar latent enthalpy of boiling of iron at 3330 K:
The direct sunlight at Earth's surface is about 1050 W/m2 . Compute mass lost by Sun in a thousand years as a fraction of Earth Mass? The lost Mass of sun/in a million yrs = ……?…..% of Earth Mass.
How many different uniquecurrents will there be in this circuit? How many different "branch" are there in this circuit where the currents could differ.

What operation do you apply to the position function of a particle to compute the particles velocity

Answers

Answer:

the derivative with respect to time

Explanation:

This is an exercise in kinematics, where the velocity is defined as a function of the position of a body of the form

            v = dx/dt

where v is the velocity of the body, x is the position that we assume is a continuous and differentiable function.

The function written in the equation is the derivative with respect to time

Imagine two billiard balls on a pool table. Ball A has a mass of 2 kilograms and ballB has a mass of 3 kilograms. The initial velocity of ball A is 9 meters per second to
the right, and the initial velocity of the ball B is 6 meters per second to the left. The
final velocity of ball A is 9 meters per second to the left, while the final velocity of
ball B is 6 meters per second to the right.

1. Explain what happens to each ball after the collision. Why do you think this
occurs? Which of Newton’s laws does this represent?

Answers

This is an example of an elastic collision. The two objects collide and return to their original shapes and move separately. In such a collision, kinetic energy is conserved. I think we can agree that this represents Newton's third law by demonstrating conservation of momentum.

Answer:

Yes, the law of conservation of momentum is satisfied. The total momentum before the collision is 1.5 kg • m/s and the total momentum after the collision is 1.5 kg • m/s. The momentum before and after the collision is the same.

Explanation:

Talia is on a road trip with some friends. In the first 2 hours, they travel 100 miles. Then they hit traffic and go only 30 miles in the next hour. The last hour of their trip, they drive 75 miles.Calculate the average speed of Talia’s car during the trip. Give your answer to the nearest whole number.

Answers

Answer:

51 mph

Explanation:

Since Speed, V = Distance/Time
Average speed = Total Distance/Total Time

From the given data, Total Distance = 100 + 30 + 75 miles
and Total Time = 2 + 1 + 1 hours

Average Speed = 205/4
Average Speed = 51.25 mph ( or 51mph to the nearest whole number)

A 200​-lb object is released from rest 600 ft above the ground and allowed to fall under the influence of gravity. Assuming that the force in pounds due to air resistance is minus10​v, where v is the velocity of the object in​ ft/sec, determine the equation of motion of the object. When will the object hit the​ ground? Assume that the acceleration due to gravity is 32 ft divided by sec squared and let​ x(t) represent the distance the object has fallen in t seconds.

Answers

Answer:

x(t) = 20t + 12.75e⁻¹•⁶ᵗ + 487.5

t = 24.375 s

Explanation:

The force balance on the object is given as

Net force = W - Drag force

ma = W - 10v

a = (dv/dt)

ma = m(dv/dt) = 200 - 10v

W = mg

200 = m×32

m = 6.25 kg

m(dv/dt) = 200 - 10v

6.25(dv/dt) = 200 - 10v

(dv/dt) = 32 - 1.6v

v' + 1.6v = 32

Solving this differential equation using the integrating factor method

(ve¹•⁶ᵗ) = ∫ (32e¹•⁶ᵗ) dt

ve¹•⁶ᵗ = (20e¹•⁶ᵗ) + c (where c = constant of integration)

v = (20 + ce⁻¹•⁶ᵗ)

At t = 0, v = 0

0 = 20 + c

c = -20

v = (20 - 20e⁻¹•⁶ᵗ)

v = (dx/dt)

(dx/dt) = 20 - 20e⁻¹•⁶ᵗ

dx = (20 - 20e⁻¹•⁶ᵗ) dt

x(t) = 20t + 12.5e⁻¹•⁶ᵗ + c (c is still the constant of integration)

At t = 0, x = - 500

- 500 = 0 + 12.5 + c

c = 512.5

x(t) = 20t + 12.75e⁻¹•⁶ᵗ - 487.5

when the object hits the ground, x = 0

0 = 20t + 12.75e⁻¹•⁶ᵗ - 487.5

20t + 12.75e⁻¹•⁶ᵗ = 487.5

Solving by trial and error,

t = 24.375 s

Hope this Helps!!!

The heating element of a coffeemaker operates at 120 V and carries a current of 4.50 A. Assuming the water absorbs all of the energy converted by the resistor, calculate how long it takes to heat 0.525 kg of water from room temperature (23.0°C) to the boiling point.

Answers

Answer:

It will take 313.376 sec to raise temperature to boiling point

Explanation:

We have given that potential difference V = 120 Volt

Current i = 4.50 A

So resistance R=(V)/(i)=(120)/(4.50)=26.666ohm

Heat flow in resistor will be equal to Q=i^2Rt

It is given that this heat is used for boiling the water

Mass of the water = 0.525 kg = 525 gram

Specific heat of water 4.186 J/gram/°C

Initial temperature is given as 23°C

Boiling temperature of water = 100°C

So change in temperature = 100-23 = 77°C

Heat required to raise the temperature of water Q=mc\Lambda T

So 4.50^2* 26.666* t=525* 4.186* 77

t = 313.376 sec

So it will take 313.376 sec to raise temperature to boiling point

Answer:

Explanation:

Voltage, V = 120 V

Current, i = 4.5 A

mass of water, m = 0.525 kg

initial temperature of water, T1 = 23°C

Final temperature of water, T2 = 100 °C

specific heat of water, c = 4.18 x 1000 J/kg °c

let the time taken is t.

Heat given by the heater = heat gain by the water

V x i x t = m x c x (T2 - T1)

120 x 4.5 x t = 0.525 x 4.18 x 1000 x (100 - 23)

540 t = 47701.5

t = 88.34 s

You wish to buy a motor that will be used to lift a 10-kg bundle of shingles from the ground to the roof of a house. The shingles are to have a 1.5-m/s2 upward acceleration at the start of the lift. The very light pulley on the motor has a radius of 0.17 m . Part A Determine the minimum torque that the motor must be able to provide. Express your answer with

Answers

To lift a 10-kg bundle of shingles with an upward acceleration of 1.5 m/s², a motor with a pulley of radius 0.17 m must provide a torque of at least 19 N.m.

We wish to use a motor to lift a 10-kg (m) bund of shingles with an upward acceleration of 1.5 m/s² (a).

The resulting force (F = m.a) is the difference between the tension (T) of the pulley and the weight (w = m.g) of the shingles.

T-m.g=m.a\nT = m.g+m.a = m(g+a) = 10 kg (9.8m/s^(2)+1.5m/s^(2)  )=113 N

where,

  • g: gravity

Then, we can calculate the minimum torque (τ) that the motor must apply using the following expression.

\tau = r * T = 0.17m * 113N = 19N.m

where,

  • r: radius of the pulley

To lift a 10-kg bundle of shingles with an upward acceleration of 1.5 m/s², a motor with a pulley of radius 0.17 m must provide a torque of at least 19 N.m.

Learn more: brainly.com/question/19247046

Answer:

\tau=19.21\ N-m

Explanation:

It is given that,

Mass of bundle of shingles, m = 10 kg

Upward acceleration of the shingles, a=1.5\ m/s^2

The radius of the motor of the pulley, r = 0.17 m

Let T is the tension acting on the shingles when it is lifted up. It can be calculated as :

T-mg=ma

T=m(g+a)

T=10* (9.8+1.5)

T = 113 N

Let \tau is the minimum torque that the motor must be able to provide. It is given by :

\tau=r* T

\tau=0.17* 113

\tau=19.21\ N-m

So, the minimum value of torque is 19.21 N-m. Hence, this is the required solution.