Answer:
35.6 g of W, is the theoretical yield
Explanation:
This is the reaction
WO₃ + 3H₂ → 3H₂O + W
Let's determine the limiting reactant:
Mass / molar mass = moles
45 g / 231.84 g/mol = 0.194 moles
1.50 g / 2 g/mol = 0.75 moles
Ratio is 1:3. 1 mol of tungsten(VI) oxide needs 3 moles of hydrogen to react.
Let's make rules of three:
1 mol of tungsten(VI) oxide needs 3 moles of H₂
Then 0.194 moles of tungsten(VI) oxide would need (0.194 .3) /1 = 0.582 moles (I have 0.75 moles of H₂, so the H₂ is my excess.. Then, the limiting is the tungsten(VI) oxide)
3 moles of H₂ need 1 mol of WO₃ to react
0.75 moles of H₂ would need (0.75 . 1)/3 = 0.25 moles
It's ok. I do not have enough WO₃.
Finally, the ratio is 1:1 (WO₃ - W), so 0.194 moles of WO₃ will produce the same amount of W.
Let's convert the moles to mass (molar mass . mol)
0.194 mol . 183.84 g/mol = 35.6 g
Answer:
S²⁻(aq) + Cr²⁺(aq) ⇄ CrS(s)
Explanation:
The molecular equation includes all the species in the molecular form. Usually, it is useful to write this first to balance the equation. This is a double displacement reaction.
K₂S(aq) + Cr(NO₃)₂(aq) ⇄ 2 KNO₃(aq) + CrS(s)
The full ionic equation includes all ions and the species that no dot dissociate in water.
2 K⁺(aq) + S²⁻(aq) + Cr²⁺(aq) + 2 NO₃⁻(aq) ⇄ 2 K⁺(aq) + 2 NO₃⁻(aq) + CrS(s)
The net ionic equation includes only those ions that participate in the reaction and the species that do not dissociate in water.
S²⁻(aq) + Cr²⁺(aq) ⇄ CrS(s)
The net ionic equation for the precipitation reaction is: Cr+ + 3S → CrS(s)
The net ionic equation for the precipitation reaction between potassium sulfide and chromium(II) nitrate can be written as:
Cr + 3S → CrS(s)
In this reaction, the chromium(II) ions (Cr) react with the sulfide ions (S) to form chromium(II) sulfide (CrS) which precipitates as a solid.
#SPJ6
IR data: 3400 (broad), 3250 (broad), 1590, 820 cm^(-1).
Draw your proposed structure below.
Answer:
Please refer to the attachment below.
Explanation:
Please refer to the attachment below for explanation.
Answer:
The new volume of the balloon is 539 L
Explanation:
As the volume increases, the gas particles (atoms or molecules) take longer to reach the walls of the container and therefore collide less times per unit time against them. This means that the pressure will be less because it represents the frequency of gas strikes against the walls. In this way, pressure and volume are related, determining Boyle's law that says:
"The volume occupied by a given gas mass at constant temperature is inversely proportional to the pressure"
Boyle's law is expressed mathematically as:
Pressure * Volume = constant
o P * V = k
Having an initial state 1 and an final state 2 will be fulfilled:
P1 * V1 = P2 * V2
So, in this case, you know:
Replacing:
760 mmHg*200 L= 282 mmHg*V2
Solving:
V2=539 L
The new volume of the balloon is 539 L
The expression for the equilibrium constant Kp for the following reaction is
It refers to the ratio of the concentration of products to the concentration of reactants where each raised to the power of their stoichiometric ratios. It is expressed as K.
Since the given expression is
MoO3(s) ↔ 2 MoO2(s) + O2(g)
So, the above expression should be considered for constant kp
Learn more about reaction here; brainly.com/question/24185208
Answer:
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as
is the constant of a certain reaction at equilibrium for gaseous reactants and products.
For the given chemical reaction:
The expression of for above equation follows:
As solids do not exert pressure, and are not involved.
OF2
CHCl3
H2O
Answer:
C6H6 has the strongest intermolecular force
i think
Answer:
H2O
Explanation:
Because it is a hydrogen bond which is said to be the strongest bond between the H and a N,O, or F combination