A high diver of mass 60.0 kg steps off a board 10.0 m above the water and falls vertical to the water, starting from rest. If her downward motion is stopped 2.10 s after her feet first touch the water, what average upward force did the water exert on her

Answers

Answer 1
Answer:

Answer:

The average upward force exerted by the water is 988.2 N

Explanation:

Given;

mass of the diver, m = 60 kg

height of the board above the water, h = 10 m

time when her feet touched the water, t = 2.10 s

The final velocity of the diver, when she is under the influence of acceleration of free  fall.

V² = U² + 2gh

where;

V is the final velocity

U is the initial velocity = 0

g is acceleration due gravity

h is the height of fall

V² = U² + 2gh

V² = 0 + 2 x 9.8 x 10

V² = 196

V = √196

V = 14 m/s

Acceleration of the diver during 2.10 s before her feet touched the water.

14 m/s is her initial velocity at this sage,

her final velocity at this stage is zero (0)

V = U + at

0 = 14 + 2.1(a)

2.1a = -14

a = -14 / 2.1

a = -6.67 m/s²

The average upward force exerted by the water;

F_(on\ diver) = mg - F_( \ water)\n\nma = mg - F_( \ water)\n\nF_( \ water) = mg - ma\n\nF_( \ water) = m(g-a)\n\nF_( \ water) = 60[9.8-(-6.67)]\n\nF_( \ water) = 60 (9.8+6.67)\n\nF_( \ water) = 60(16.47)\n\nF_( \ water) = 988.2 \ N

Therefore, the average upward force exerted by the water is 988.2 N


Related Questions

1. Two charges Q1( + 2.00 μC) and Q2( + 2.00 μC) are placed along the x-axis at x = 3.00 cm and x=-3 cm. Consider a charge Q3 of charge +4.00 μC and mass 10.0 mg moving along the y-axis. If Q3 starts from rest at y = 2.00 cm, what is its speed when it reaches y = 4.00 cm?
If you hang a car of mass 1560 kg from a steel beam, the beam bends with an angle of 0.055°. What is the tension in this beam in newtons?
15.Restore the battery setting to 10 V. Now change the number of loops from 4 to 3. Explain what happens to the magnitude and direction of the magnetic field. Now change to 2 loops, then to 1 loop. What do you observe the relationship to be between the magnitude of the magnetic field and the number of loops for the same current
*PLEASE HELP*A baseball is pitched with a horizontal velocity of 25.21 m/s. Mike Trout hits the ball, sending it in the opposite direction (back toward the pitcher) at a speed of -50.67 m/s. The ball is in contact with the bat for 0.0014 seconds. What is theacceleration of the ball?
If a coil stays at rest in a very large static magnetic field, no emf is induced in this coil. Group of answer choices True False

If Jim could drive a Jetson's flying car at a constant speed of 490 km/hr across oceans and space, approximately how long (in millions of years, in 106 years) would he take to drive to a nearby star that is 4.5 light-years away? Use 9.461 × 1012 km/light-year and 8766 hours per year (365.25 days). unanswered

Answers

Answer:

109.5 million years

Explanation:

The question asked us to find the time.

Remember that

Rate of velocity = distance / time, and this,

time taken = distance/rate

Due to the confusing nature of the units, we would have to be converting them to a more uniform one.

1 km is equal to 9.461*10^12 km/light-year, that's if we try to convert km to light year.

Since the speed is in km, the distance has to be in km also, and therefore, we convert ly to km:

4.5 light-years = 9.461*10^12 km/light-year) = 42.57*10^13 km

We that this value as our distance, in km.

Also,

Time = distance/speed

Time = 45.57*10^13 km / 490 km/hr = 9.3*10^11 hr

Now the next step is to convert hours to years, using the conversion factor 8766 hr/yr.

time (in years) = 9.6*10^11 hr / 8766 hr/yr) = 10.95*10^7 years

the final step is to divide the time in years by 10^6 years/million years, which gives the final answer as the trip takes 109.5 million years.

If the radio waves transmitted by a radio station have a frequency of 83.5 MHz, what is the wavelength of the waves, in meters

Answers

Answer: wavelength =3.52m

Explanation:

,λ=c/μ

where c=speed of the light,λ=wave length, μ=frequncy

c=3x10^8m/s

And

μ=83.5/MHz =85.3x10^6Hz==85.3x10^6Hz=

=85.3x10^6s-1

λ=c/μ

=3x10^8m/s/85.3x10^6s-1

=3.51699883

=3.52m

For the system shown below, what is the critical angle (angle at which the system just begins to move)? Assume that the coefficient of friction between all flat surfaces is 0.0500 and that the pulley is frictionless. The mass of m1 is 76.00 kg and the mass of m2 is 194.00 kg. Express your answer in radians.

Answers

THIS IS A PROBLEM OF PHYSICS MECHANIC, PLEASE READ CAREFULLY THE ATTACHED FILE.

Final answer:

To find the critical angle, we need to consider the forces acting on the system. The weight and frictional force must be taken into account. By equating the forces and solving for the critical angle, we can determine at what angle the system just begins to move.

Explanation:

To determine the critical angle for the system shown, we need to consider the forces acting on the objects. The force pulling m1 downwards is its weight, which is equal to its mass multiplied by the acceleration due to gravity. The force preventing m1 from moving is the frictional force, which is equal to the coefficient of friction multiplied by the normal force. The normal force is the force exerted by the surface perpendicular to it, which is equal to the weight of m2 minus the weight of the hanging part of the rope.

At the critical angle, the force of friction is at its maximum value, which is equal to the coefficient of friction multiplied by the normal force. The force pulling m1 downwards is equal to the force of friction. By equating these forces and solving for the critical angle, we can find the answer.

Learn more about critical angle here:

brainly.com/question/35460828

#SPJ2

An Australian emu is running due north in a straight line at a speed of 13.0 m/s and slows down to a speed of 9.40 m/s in 3.50 s. (a) What is the magnitude and direction of the bird’s acceleration? (b) Assuming that the acceleration remains the same, what is the bird’s velocity after an additional 1.20 s has elapsed?

Answers

(a) The acceleration of the bird is a = -1.02\ m/s. The negative sign indicated the opposite direction of motion. (b) The final speed is v = 11.76\ m/s.

Given:

Initial speed,u = 13\ m/s

Final speed, 9.4\ m/s

Time, t = 3.5\ s

The acceleration can be computed from the velocities and time. The standard unit of acceleration is a meter per second square.

(a)

The acceleration is computed as:

a = v-u/t\na = 9.4-13/3.5\na = -1.02\ m/s

Hence, the acceleration of the bird is a = -1.02\ m/s. The negative sign indicated the opposite direction of motion.

(b)

The final speed as the given time can be computed from the first equation of motion. The first equation of motion gives the relation between final and initial speed, acceleration, and time.

The final speed at time 1.2 seconds is equal to:

v = u+at\nv = 13+(-1.02)*1.20\nv = 11.76\ m/s

Hence, the final speed is v = 11.76\ m/s.

To learn more about Acceleration, here:

brainly.com/question/2303856

#SPJ12

A 1.5v battery stores 4.5KJ of energy. How long can it light a flashlight bulb that draws 0.60A​

Answers

Answer:

The 1.5V battery can power the flashlight bulb drawing 0.60A for 83.33 minutes before it is depleted.

Explanation:

To determine how long a 1.5V battery can power a flashlight bulb drawing 0.60A, you can use the formula for calculating the energy (in joules) consumed by an electrical device over time:

Energy (Joules) = Power (Watts) × Time (Seconds)

In this case, the power (P) is given by the product of the voltage (V) and current (I):

Power (Watts) = Voltage (Volts) × Current (Amperes)

So, first, calculate the power consumption of the flashlight bulb:

Power (Watts) = 1.5V × 0.60A = 0.90 Watts

Now, you want to find out how long the battery can power the bulb, so rearrange the energy formula to solve for time:

Time (Seconds) = Energy (Joules) / Power (Watts)

Given that the battery stores 4.5 kJ (kilojoules), which is equivalent to 4,500 joules, and the power consumption is 0.90 watts:

Time (Seconds) = 4,500 J / 0.90 W = 5,000 seconds

Now, to express the time in more practical units, convert seconds to minutes:

Time (Minutes) = 5,000 seconds / 60 seconds/minute ≈ 83.33 minutes

So, the 1.5V battery can power the flashlight bulb drawing 0.60A for approximately 83.33 minutes before it is depleted.

A simple pendulum takes 2.20 s to make one compete swing. If we now triple the length, how long will it take for one complete swing?

Answers

Answer:

Time taken for 1 swing = 3.81 second

Explanation:

Given:

Time taken for 1 swing = 2.20 Sec

Find:

Time taken for 1 swing , when triple the length(T2)

Computation:

Time taken for 1 swing = 2π[√l/g]

2.20 = 2π[√l/g].......Eq1

Time taken for 1 swing , when triple the length (3L)

Time taken for 1 swing = 2π[√3l/g].......Eq2

Squaring and dividing the eq(1) by (2)

4.84 / T2² = 1 / 3

T2 = 3.81 second

Time taken for 1 swing = 3.81 second