Answer:
1. Q = 8.66 KJ
2. Q = 7.58 Kcal
3. Q = 0.71 KJ
4. Q = 24.31 Kcal
Explanation:
1. The quantity of heat absorbed can be determined by:
Q = mcΔθ
where: Q is the quantity of heat absorbed or released, m is the mass of the substance, c is the specific heat capacity of water = 4.2 j/g and Δθ is the change in temperature.
= 45.2 × 4.2 × (76.9 - 31.3)
= 8656.704
∴ Q = 8.66 KJ
The quantity of heat absorbed is 8.66 KJ.
2. Q = mcΔθ + mL
Where L is the latent heat of fusion of ice = 334 J.
= m(cΔθ + L)
= 72.1(4.2 × 25.2 + 334)
Q = 31712.464 J
= 7579.466 calories
The total heat released is 7.58 Kcal.
3. Q = mcΔθ
= 55.5 × 0.129 × (123.4 - 24.6)
= 707.3586
The quantity of heat required to increase the temperature of gold is 0.71 KJ.
4. Q = mL
Where: L is the specific latent heat of vaporization = 533 calories.
Q = 45.6 × 533
= 24304.8
The quantity of heat required to change water to steam is 24.31 Kcal.
Answer:
a) ΔHºrxn = 116.3 kJ, ΔGºrxn = 82.8 kJ, ΔSºrxn = 0.113 kJ/K
b) At 753.55 ºC or higher
c )ΔG = 1.8 x 10⁴ J
K = 8.2 x 10⁻²
Explanation:
a) C6H5−CH2CH3 ⇒ C6H5−CH=CH2 + H₂
ΔHf kJ/mol -12.5 103.8 0
ΔGºf kJ/K 119.7 202.5 0
Sº J/mol 255 238 130.6*
Note: This value was not given in our question, but is necessary and can be found in standard handbooks.
Using Hess law to calculate ΔHºrxn we have
ΔHºrxn = ΔHfº C6H5−CH=CH2 + ΔHfº H₂ - ΔHºfC6H5−CH2CH3
ΔHºrxn = 103.8 kJ + 0 kJ - (-12.5 kJ)
ΔHºrxn = 116.3 kJ
Similarly,
ΔGrxn = ΔGºf C6H5−CH=CH2 + ΔGºfH₂ - ΔGºfC6H5CH2CH3
ΔGºrxn= 202.5 kJ + 0 kJ - 119.7 kJ = 82.8 kJ
ΔSºrxn = 238 J/mol + 130.6 J/mol -255 J/K = 113.6 J/K = 0.113 kJ/K
b) The temperature at which the reaction is spontaneous or feasible occurs when ΔG becomes negative and using
ΔGrxn = ΔHrxn -TΔS
we see that will happen when the term TΔS becomes greater than ΔHrxn since ΔS is positive , and so to sollve for T we will make ΔGrxn equal to zero and solve for T. Notice here we will make the assumption that ΔºHrxn and ΔSºrxn remain constant at the higher temperature and will equal the values previously calculated for them. Although this assumption is not entirely correct, it can be used.
0 = 116 kJ -T (0.113 kJ/K)
T = 1026.5 K = (1026.55 - 273 ) ºC = 753.55 ºC
c) Again we will use
ΔGrxn = ΔHrxn -TΔS
to calculate ΔGrxn with the assumption that ΔHº and ΔSºremain constant.
ΔG = 116.3 kJ - (600+273 K) x 0.113 kJ/K = 116.3 kJ - 873 K x 0.113 kJ/K
ΔG = 116.3 kJ - 98.6 kJ = 17.65 kJ = 1.8 x 10⁴ J ( Note the kJ are converted to J to necessary for the next part of the problem )
Now for solving for K, the equation to use is
ΔG = -RTlnK and solve for K
- ΔG / RT = lnK ∴ K = exp (- ΔG / RT)
K = exp ( - 1.8 x 10⁴ J /( 8.314 J/K x 873 K)) = 8.2 x 10⁻²
The change in enthalpy, entropy, and free energy were calculated for the dehydrogenation reaction of ethylbenzene into styrene. The reaction was found to be endothermic and results in a decrease in overall disorder. Under the given conditions, the reaction will never be spontaneous.
The processes involved in the production of styrene from ethylbenzene are fairly complex and require knowledge of thermodynamics. We'll begin with ΔH°rxn, which is found by subtracting the enthalpy (ΔH) of the reactants from that of the products: ΔH°rxn = [ΔH°f(styrene)] - [ΔH°f(ethylbenzene)] = 103.8 kJ/mol - (-12.5 kJ/mol) = 116.3 kJ/mol. This means the reaction is endothermic, as heat is absorbed.
The change in entropy ΔS°rxn, obtained likewise, is [S°(styrene) - S°(ethylbenzene)] = (238 J/mol·K - 255 J/mol·K) = -17 J/mol·K. This indicates a decrease in disorder in the system.
With these, we can calculate the change in free energy ΔG°rxn at a given temperature (T) using the equation ΔG°rxn = ΔH°rxn - TΔS°rxn. Substituting the known values at 298 K, ΔG°rxn = 116.3 kJ/mol - (298 K)(-17 J/mol·K) = 121.2 kJ/mol, indicating a non-spontaneous reaction.
For the reaction to be spontaneous, ΔG°rxn must be less than zero. Solving for T in the above equation with ΔG°rxn = 0, yields T = ΔH°rxn / ΔS°rxn = 116.3 kJ/mol / -17 J/mol·K ≈ -6840 K. This value is negative, implying the reaction is never spontaneous under the given conditions.
#SPJ12
Answer:
C
Explanation:
Answer:
Explanation:
Knowing that you have 64.92 grams of Hg(NO₃)₂ to make 5.00 liters of solution, you can calcualte the molarity of the solution.
Molarity is a measure of concentration, defined as the number of moles of solute per liter of soluiton. Mathematically:
Then, first you must calculate the number of moles of solute. The formula is:
You can either calculate the molar mass of the compound using the chemical formula or search it in the internet.
The molar mass of Hg(NO₃)₂ is found to be 324.7 g/mol.
Now you have everything to calculate the molarity of the solution:
b) Calculate the mass of NaHCO3 required to produce 20.5 g of CO2.
Answer:
a. NaHCO₃ + HCl → NaCl + H₂O + CO₂
b. 39.14 g is the mass of NaHCO₃ required to produce 20.5 moles of CO₂
Explanation:
A possible reaction for NaHCO₃ to make dioxide is this one, when it reacts with hydrochloric to produce the mentioned gas.
NaHCO₃ + HCl → NaCl + H₂O + CO₂
Ratio in this reaction is 1:1
So 1 mol of baking soda, produce 1 mol of CO₂
Let's calculate the moles
20.5 g CO₂ / 44 g/m = 0.466 moles
This moles of gas came from the same moles of salt.
Molar mass baking soda = 84 g/m
Molar mass . moles = mass
84 g/m . 0.466 moles = 39.14 g
Answer:
Three atoms are attached to the central atom in NF3.
Explanation:
The central atom is always regarded as the atom having the least electronegativity in a molecule or ion. We can decide on what atom should be the central atom by comparing the relative electro negativities of the atoms in the molecule or ion.
If we consider NF3, we can easily see that nitrogen is less electronegative than fluorine, hence nitrogen is the central atom in the molecule. We can also observe from the molecular model that three atoms of fluorine were attached to the central atom. Hence there are three atoms attached to the central atom in the molecule NF3.
Answer:
4.93g are extracted
Explanation:
Partition coefficient (P) is defined as the ratio of solute dissolved in the organic solvent and the solute dissolved in the aqueous phase.
That is:
P = 7.5 = Concentration in dichloromethane / Concentration in water.
Knowing this, in the first extraction with 25mL of dichloromethane you will extract:
7.5 = (X/25mL) / (5g - X) / 100mL
Where X is the amount of compound A that is extracted.
7.5 = 100X / (125 - 25X)
937.5 - 187.5X = 100X
937.5 = 287.5X
3.26g of A are extracted in the first extraction.
In water will remain 5g - 3.26g = 1.74g
In the second extraction you will extract:
7.5 = (X/25mL) / (1.74g - X) / 100mL
7.5 = 100X / (43.5 - 25X)
326.25 - 187.5X = 100X
326.25 = 287.5X
1.13g are extracted in the second extraction.
And remain: 1.74g - 1.13g = 0.61g
In the third extraction you will extract:
7.5 = (X/25mL) / (0.61g - X) / 100mL
7.5 = 100X / (15.25 - 25X)
114.375 - 187.5X = 100X
114.375 = 287.5X
0.40g are extracted in the third extraction.
And remain: 0.61g - 0.40g = 0.21g
In the second extraction you will extract:
7.5 = (X/25mL) / (0.21g - X) / 100mL
7.5 = 100X / (5.25 - 25X)
39.375 - 187.5X = 100X
39.375 = 287.5X
0.14g are extracted in the fourth extraction.
Thus, after the three extractions you will extract: 0.14g + 0.40g + 1.13g + 3.26g = 4.93g are extracted
The process involves using the partitioncoefficient to determine how much of Compound A will prefer the dichloromethane solvent over the water. Following a calculation process through four rounds of extraction, it is concluded that approximately 4.999g of Compound A will be extracted using four 25mL portions of dichloromethane.
The partition coefficient of a compound is a measure of how much it prefers one solvent over another. Given that the partition coefficient of Compound A is 7.5 in dichloromethane with respect to water, we can predict how much of this compound could be extracted using four separate 25 mL portions of dichloromethane.
Here's the step-by-step calculation process:
In total, around 4.999g of compound A will be extracted using four 25mL portions of dichloromethane.
#SPJ3