Answer:
V = 2.79 m/s
Explanation:
Momentum before = momentum after
Erica's momentum = 0
Danny momentum = 49 kg * 4.9 m/s = 240.1 kg-m/s
240.1 + 0 = (37 + 49) kg * V
86 V = 240.1
V = 2.79 m/s
Answer:
3.75m/s²
Explanation:
g= GM/r²
For planet 1
= GM/r² (i)
= 15m/s²
for planet 2
radius= 2*r= 2r
g= GM/r
= GM/(2r)²
= GM/4r²
= GM/r² *1/4
from (i)
= *1/4
= 15/4
= 3.75m/s²
Answer:
da
Explanation:
b.T1 is ..... M1g.
c. T3 is ..... m1g + M2g
d.T1 is ..... T2
e.The magnitude of the acceleration of M2 is ..... the magnitude of the acceleration on m1.
f. T1 + T2 is ..... T3
Answer:
a. center of mass acceleration supposed to be acceleration due to gravity, 9.81 m/s^2,
b. T1 = 9.81m1 N; c. T3 =9.81(M1+M2) N; d. T3-T1, e. (T3-T1)/M2; f. (M1+M2)T3/M3
Explanation:
In this frictionless, massless pulley system, the center of mass accelerates downward with an acceleration equal to the acceleration due to gravity. The tension in the string connected to mass M1 is equal to M1g, and the tension in the string connected to mass M2 is equal to m1g + M2g. The magnitudes of the accelerations of M1 and M2 are equal, and the sum of the tensions T1 and T2 is equal to the tension T3.
a. The center of mass accelerates: When considering the system as a whole, the acceleration of the center of mass is determined by the net external force acting on the system. In this case, the only external force is the force due to gravity. Therefore, the center of mass accelerates downward with an acceleration equal to g, the acceleration due to gravity.
b. T1 is equal to M1g: The tension in the string connected to mass M1 is equal to the weight of M1, which is given by the formula T1 = M1g.
c. T3 is equal to m1g + M2g: The tension in the string connected to mass M2 is equal to the sum of the weights of M1 and M2, which is given by the formula T3 = m1g + M2g.
d. T1 is equal to T2: Since the pulley is assumed to be frictionless and massless, the tension in the string connected to mass M1 is the same as the tension in the string connected to mass M2.
e. The magnitude of the acceleration of M2 is equal to the magnitude of the acceleration on M1: This is due to the constraint imposed by the tension in the string. Since the tension in the string connecting M1 and M2 is the same, their accelerations must also be the same.
f. T1 + T2 is equal to T3: The sum of the tensions T1 and T2 is equal to the tension T3, as the total force acting on mass M2 is equal to the sum of the individual tensions.
#SPJ12