Answer:
171.8°C
Explanation:
V1= 1780ml, V2= 2.55L= 2550L, T1= 273+37.5= 310.5
T2=?
Applying
V1/T1 = V2/T2
1780/310.5 = 2550/T2
T2= 444.8K -273 = 171.8°C
Answer:
Lewis structure of Hydronium ion is shown below :
Explanation:
Lewis structure : It is a representation of valence electrons on the atoms in a molecule
Here , Hydronium ion is given , which contains 1 atom of oxygen and 3 atoms of hydrogen .
Oxygen has a total of 6 valence electrons and hydrogen contains 1 valence electron .
Oxygen share its 3 valence electrons with 3 hydrogen atoms and left with 3 valence electrons. From these three valence electrons of oxygen atom two electrons will be shown as a pair of electrons on oxygen atom but a single electron can not be shown . So , to simplify this, one positive charge is shown overall .
Resonance structure will be same as the hybrid structure because all three atoms are same , that is hydrogen .
Answer : The mass of sucrose added to 375 mL of water must be, 10.6 grams.
Explanation :
As we are given that 2.75 m/m percent solution of sucrose. That means, 2.75 grams of sucrose present in 100 grams of solution.
Mass of solution = 100 g
Mass of sucrose = 2.75 g
Mass of water = Mass of solution - Mass of sucrose
Mass of water = 100 g - 2.75 g
Mass of water = 97.25 g
First we have to calculate the mass of water.
Density of water = 1.00 g/mL
Volume of water = 375 mL
Now we have to calculate the mass of sucrose in 375 g of water.
As, 97.25 grams of water contain 2.75 grams of sucrose
So, 375 grams of water contain grams of sucrose
Therefore, the mass of sucrose added to 375 mL of water must be, 10.6 grams.
To make a 2.75% m/m sucrose solution, you need to add approximately 1062 grams of sucrose to 375 mL of water, considering the density of water as 1 g/mL.
To prepare a mass/mass (m/m) percent solution of sucrose, you need to calculate the mass of sucrose (in grams) that needs to be added to 375 mL of water to achieve a 2.75% concentration.
Here's how you can calculate it:
1. Convert the volume of water to grams, considering the density of water:
Density of water ≈ 1 g/mL
Mass of water = Volume of water × Density of water
Mass of water = 375 mL × 1 g/mL = 375 g
2. Determine the desired mass of sucrose as a percentage of the total mass:
Desired m/m percent = 2.75%
3. Calculate the mass of sucrose needed:
Mass of sucrose = (Desired m/m percent / 100) × Total mass
Mass of sucrose = (2.75 / 100) × (375 g + Mass of sucrose)
4. Rearrange the equation to solve for the mass of sucrose:
Mass of sucrose = (2.75 / 100) × (375 g) / (1 - (2.75 / 100))
Now, calculate:
Mass of sucrose = (2.75 / 100) × (375 g) / (1 - 0.0275)
Mass of sucrose ≈ (2.75 / 100) × (375 g) / 0.9725
Mass of sucrose ≈ (2.75 × 375 g) / 100 / 0.9725
Mass of sucrose ≈ (1031.25 g) / 0.9725
Mass of sucrose ≈ 1061.98 g
So, approximately 1062 grams of sucrose must be added to 375 mL of water to prepare a 2.75 m/m percent solution of sucrose.
For more such questions on Solution Chemistry
#SPJ3
with different properties are formed?
The chemical reaction indicate the formation of new substance by change in nature of original compound and shows chemical changes in the reaction.
Chemical reaction is defined as process in which two or more molecules collide with the proper orientation and enough force to produce a new product.
It is also defined as a procedure in which one or more compounds, known as reactants, are changed into one or more distinct substances, known as products.
There are mainly seven types of reaction.
Thus, the chemical reaction indicate the formation of new substance by change in nature of original compound and shows chemical changes in the reaction.
To learn more about chemical reaction, refer to the link below:
#SPJ5
Answer:
Changes in Properties Changes in properties result when new substances form. For instance, gas production, formation of a precipitate, and a color change are all possible evidence that a chemical reaction has taken place. ... Change in Color A color change can signal that a new substance has formed.
Explanation:
Explanation:
There are 1.51 x 1024 molecules of carbon dioxide in 2.50 moles of carbon dioxide.
Answer:
Each cyclist will need to drink 619 l
Explanation:
Hi there!!
First, let´s convert the miles to kilometers:
If 1.0 mi = 1609 m, then 385 mi will be:
385 mi · (1609 m/ 1.0 mi) · (1 km/ 1000 m) = 619 km
Now, if each cyclist need to drink one liter water per kilometer ( I think that´s a lot of water!), for the entire journey each cyclist will need to drink:
619 km · 1 l/km = 619 l
Then, each cyclist will need to drink 619 l.