Answer:
0.2320V
Explanation:
Voltage can be defined as the amount of potential energy available (work to be done) per unit charge, to move charges through a conductor.
Voltage can be generated by means other than rubbing certain types of materials against each other.
Please look at attached file for solution to the problem.
The expected voltage generated by this concentration cell is approximately 0.113 V.
To calculate the voltage generated by the concentration cell, we can use the Nernst equation. The Nernst equation relates the concentration of the ions in the two compartments to the voltage of the cell. The equation is:
E = E° - (RT/nF) ln(Q)
Where:
The reaction quotient (Q) can be calculated using the concentrations of the lead (II) and iodide ions in each compartment.
Since this is a concentration cell, the standard cell potential (E°) for this system is 0 V. Therefore, the equation simplifies to:
E = - (RT/nF) ln(Q)
Now we can calculate the voltage:
The solubility product constant (Ksp) for PbI2 is 1.4 x 10-8. Because PbI2 is in a saturated solution, the concentration of Pb2+ ions and I- ions are both equal to the solubility of PbI2. We can substitute these values into the equation to calculate Q:
Q = [Pb²+] x [I-]
Q = (1.4 x 10-8) x (1.4 x 10-8) = 1.96 x 10-16
Now we can calculate the voltage using the given values:
For the Nernst equation, we need to convert the temperature to Kelvin:
T = 25°C + 273 = 298 K
Substitute the values into the equation:
E = - (8.314 J/mol·K x 298 K / 2 x 96,485 C/mol) ln(1.96 x 10-16)
E ≈ 0.113 V
Therefore, the expected voltage generated by this concentration cell is approximately 0.113 V.
#SPJ11
Answer:
A. 1 J=1kg•m^2/s^2
Explanation:
Energy refers to the capacity to do work. According to the International System of units (SI units), energy is measured in Joules.
Energy is represented by the force applied over a distance. Force is measured in Newton (N) and distance in metres (m). Hence, energy is Newton × metre (N.m)
Newton is derived from the SI units of mass (Kilograms), and acceleration (metres per seconds^2) i.e Kg.m/s^2, since Force = mass × acceleration.
Since; Energy = Newton × metres
If Newton = Kg.m/s^2 and metres = m
Energy (J) will therefore be; Kg.m/s^2 × m
1J = Kg.m^2/s^2
O B. CO2 + H2O → H2CO3
O C. NaOH + HCl → NaCl + H20
O D. C2H4 + Cl2 → C2H4Cl2
The chemical equation 2 C₂H₂ +5 O₂ + 4 CO₂ + 2 H₂O is the equation which represents the combustion of a hydrocarbon.
Chemical equation is a symbolic representation of a chemical reaction which is written in the form of symbols and chemical formulas.The reactants are present on the left hand side while the products are present on the right hand side.
A plus sign is present between reactants and products if they are more than one in any case and an arrow is present pointing towards the product side which indicates the direction of the reaction .There are coefficients present next to the chemical symbols and formulas .
The first chemical equation was put forth by Jean Beguin in 1615.By making use of chemical equations the direction of reaction ,state of reactants and products can be stated. In the chemical equations even the temperature to be maintained and catalyst can be mentioned.
Learn more about chemical equation,here:
#SPJ5
Answer:
a
Explanation:
Answer:
Chloroform.
Explanation:
Given,
Solvent requires 1g of compound per 100 mL
For water,
= 1g/47ml
= 2.1
For Chloroform,
= 1 g/8.1 mL
= 12.345679
For Diethyl ether,
= 1 g/370 mL
= 0.27
For Benzene,
= 1 g/86 mL
= 1.2
Partition coefficients:
Water = -
chloroform = 5.9
Diethyl = .13
Benzene = .57
The solvent chloroform would be chosen for drawing out the compound out of an aqueous solution as it has the maximum solubility.
The solubility of a compound in different solvents will determine its concentration in each solvent. The partition coefficient represents the relative solubility of a compound in two immiscible solvents. Chloroform would be the best choice to extract the compound from an aqueous solution.
The solubility of a compound is usually expressed as grams of solute per 100 mL of solvent. To calculate the solubility, you can use the following formula:
Solubility (g/100 mL) = (mass of solute / volume of solvent) * 100
Using this formula, the solubility of the compound in water is 47 g/100 mL, in chloroform is 97.53 g/100 mL, in diethyl ether is 2.70 g/100 mL, and in benzene is 1.16 g/100 mL.
The partition coefficient is a measure of the compound's solubility in two immiscible solvents. To calculate it, divide the solubility of the compound in one solvent by its solubility in another solvent. For example, the partition coefficient between chloroform and water would be:
Partition coefficient = Solubility in chloroform / Solubility in water = 97.53 g/100 mL / 47 g/100 mL = 2.07
The larger the partition coefficient, the more soluble the compound is in the first solvent compared to the second solvent. Based on the partition coefficients, chloroform would be the best choice to extract the compound from an aqueous solution.
#SPJ3
Answer: 38 chlorine atoms are in 3 molecules of HCI
Explanation:
In 2 molecules of ICl, there would be 2 atoms of Chlorine, as the subscript of Chlorine in the compound ICl is 1.
In a compound, the subscript of an element indicates the number of atoms of that element present per molecule of the compound. For the ICl compound, there is one atom of Chlorine in one molecule. Therefore, in 2 molecules of ICl, there would be 2*1 = 2 atoms of Chlorine.
#SPJ3