Answer:
11.29Kj
Explanation:
1. find moles of 33.8g of water
Molar mass of H2O: 18.02g/Mol
33.8/18.02= 1.88mols
2. find energy
1.88 x 6.02= 11.29Kj
Answer:pH = 2.96
Explanation:
C5H5N + HBr --------------> C5H5N+ + Br-
millimoles of pyridine = 80 x 0.3184 =25.472mM
25.472 millimoles of HBr must be added to reach equivalence point.
25.472 = V x 0.5397
V =25.472/0.5397= 47.197 mL HBr
total volume = 80 + 47.197= 127.196 mL
Concentration of [C5H5N+] = no of moles / volume=
25.472/ 127.196= 0.20M
so,
pOH = 1/2 [pKw + pKa + log C]
pKb = 8.77
pOH = 1/2 [14 + 8.77 + log 0.20]
pOH = 11.0355
pH = 14 - 11.0355
pH = 2.96
b. barium sulfate
c. Repeat the above calculations using ionic strength and activities.
Answer:
a. 1.7 × 10⁻⁴ mol·L⁻¹; b. 5.5 × 10⁻⁹ mol·L⁻¹
c. 2.3 × 10⁻⁴ mol·L⁻¹; 5.5 × 10⁻⁸ mol·L⁻¹
Explanation:
a. Silver iodate
Let s = the molar solubility.
AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq); Ksp = 3.0 × 10⁻⁸
E/mol·L⁻¹: s s
b. Barium sulfate
BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq); Ksp = 1.1 × 10⁻¹⁰
I/mol·L⁻¹: 0.02 0
C/mol·L⁻¹: +s +s
E/mol·L⁻¹: 0.02 + s s
c. Using ionic strength and activities
(i) Calculate the ionic strength of 0.02 mol·L⁻¹ Ba(NO₃)₂
The formula for ionic strength is
(ii) Silver iodate
a. Calculate the activity coefficients of the ions
b. Calculate the solubility
AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq)
(iii) Barium sulfate
a. Calculate the activity coefficients of the ions
b. Calculate the solubility
BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq
Answer: The reaction is exothermic. The value of q is -542 kJ.
Explanation:
Endothermic reactions are defined as the reactions in which energy of the product is greater than the energy of the reactants. The total energy is absorbed in the form of heat and for the reaction comes out to be positive.
Exothermic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat and for the reaction comes out to be negative.
Thus evolves heat , it is exothermic in nature. The value of q is -542kJ.
Using the radiocarbon dating technique and applying the decay formula, it is calculated that the age of the charcoal from the an ancient campsite is approximately 9,500 years.
The age of the charcoal can be found using the technique of radiocarbon dating, which capitalizes on the process of radioactive decay. The isotope carbon-14 (¹4C) is used in this method as it has a known half-life of 5730 years. The number of decays per minute per gram of carbon in a live organism is known as its activity.
Initially, the activity was given as 15 decays per minute per gram. The present activity of the carbon in the charcoal is provided at 1580 decays per minute for a 0.94 kg or 940 gram sample. Thus, the current activity per gram is 1580/940 equals approximately 1.68 decays per minute per gram.
Given that the half-life of ¹4C is 5730 years, we can apply the formula for calculating the time passed using the rate of decay, which is given as T = (t1/2 / ln(2)) * ln(N0/N), where 'ln' is the natural logarithm, 'N0' is the initial quantity (15 decays/minute per gram), 'N' is the remaining quantity (1.68 decays/minute per gram).
Plugging in the given values, we get T = (5730 / ln(2)) * ln(15/1.68), which gives us approximately 9,500 years. Therefore, the age of the charcoal is around 9,500 years.
#SPJ3
Explanation:
because T is const so
deltaS=Q/T=nRLn(V2/V1)
=(14/28)x8.314xLn(30/10)=4,567 J/k
Answer:
Substance B
Explanation:
Molar heat of A = 31.2J/mole.°C
Molar heat of B = 11.2 J/mole∙°C.
The molar heat of a substance is the amount of heat that must be added to a mole of a substance to raise the temperature by 1°C.