Answer:
(c) 18.8 g; (a) 0.798; (b) 16 mL
Explanation:
You don't give your experimental data, so I shall assume:
Mass of Al = 1.07 g
20 mL of 3 mol·L⁻¹ KOH
20 mL of 9 mol·L⁻¹ H₂SO₄
The overall equation for the reaction is
Mᵣ: 26.98 474.39
2Al + 2KOH +4H₂SO₄ + 22H₂O ⟶ 2K[Al(SO₄)₂]·12H₂O + 3H₂
m/g: 1.07
(c) Theoretical yield of alum
(i) Moles of Al
(ii) Moles of alum
(iii) Theoretical yield of alum
(a) Scaling factor for 15.0 g alum
You want a theoretical yield of 15.0 g, so you must scale down the reaction.
(b) Corrected volumes of NaOH and H₂SO₄
V = 0.798 × 20 mL = 16 mL
Answer:
Individual mole fractions of all the species of the all reaction is as follows.
(a)
(b)
(c)
Explanation:
(a)
Initial number of moles of and are 2 mol and 5 mol respectively.
The given chemical reaction is as follows.
The stoichiometric numbers are as follows.
The total number of moles initially present -7
The expression for the mole fraction of species"i" is as follows.
The individual mole fractions of all the species are as follows.
(b)
Initial number of moles of and are 3 mol and 5 mol respectively.
The given chemical reaction is as follows.
The stoichiometric numbers are as follows.
The total number of moles initially present -8
The expression for the mole fraction of species"i" is as follows.
The individual mole fractions of all the species are as follows.
(c)
Initial number of moles of , and are 3 mol,4 mol and 1 mol respectively.
The given chemical reaction is as follows.
The stoichiometric numbers are as follows.
The total number of moles initially present -8
The expression for the mole fraction of species"i" is as follows.
The individual mole fractions of all the species are as follows.
Expressions for the mole fractions of reacting species are determined using stoichiometry and the initial molar amounts, taking into account the stoichiometric coefficients of the chemical reactions.
To develop expressions for the mole fraction of reacting species as functions of the reaction coordinate for the given systems, we will examine each reaction individually. For the reaction 4NH3 (g) + 5O2 (g) ® 4NO (g) + 6 H2O (g), we can use stoichiometry to correlate the molar amounts of each species with reaction progress. Given the initial amounts, we will track how the molar amount changes for each mole of NH3 reacted.
Starting with 2 mol NH3 and 5 mol O2, the mole ratio from NH3 to NO and H2O is 1:1 and 1:1.5, respectively. The mole ratio from NH3 to O2 is 4:5. If x moles of NH3 react, the mole fractions for each species at any point in the reaction can be expressed as follows:
Note that 'Total moles' is the sum of the ongoing moles of all species. The mole fractions must always add up to 1 at any point during the reaction.
For the second reaction 6NO2 (g) + 8NH3 (g) ® 7N2 (g) +12H2O (g), with initial amounts of 3 mol NO2, 4 mol NH3, and 1 mol N2, similar steps are taken. For every mole of NH3 reacted, the corresponding changes in molar amounts can be calculated from the stoichiometry of the balanced equation.
#SPJ3
Scientific data related to the ecosystem and the effect of environmental changes.
Political action by governments and other organizations such as environmental
protection groups.
Economic issues such as cost of wood products, fuel for heat, price of electricity, and
income levels of local people.
Answer:
ALL of these are factors in conservation.
Explanation:
What is microscope?
Answer: if you are looking for a worksheet go to teachers pay s teachers or Pinterest
Explanation: these are very reliable sources to find good worksheets
B. 2Ba (aq)
C. 2Ag (aq)
D. CI(aq)
Answer:
Option C
Explanation:
Consider the ionic equation of this chemical equation. We are given barium chloride and silver nitrate as the reactants, and silver chloride and barium nitrate as the products. We can thus conclude that the ionic equation ( not balanced yet ) should be as follows -
Ba( 2 + ) + Cl ( - ) + Ag ( + ) + NO3 ( - ) ------> AgCl + Ba( 2 + ) + NO3( - )
As you can see these compounds are present in aqueous solutions, and are thus dissociated.
______________________________________________________
Now let us take a look at the number of elements on the reactant and product sides, and balance this chemical equation out -
Ba( 2 + ) + 2Cl ( - ) + 2Ag ( + ) + 2NO3 ( - ) ------> 2AgCl + Ba( 2 + ) + 2NO3( - )
Solution = Option C!
How many bonding electrons are present in this compound?
How many lone pair (non-bonding) electrons are present in this compound?
Answer:
Valence electrons in XeCl2 = 8 + 7 + 7 = 22.
Bonding electrons = 4.
Nonbonding electrons = 18.
Explanation:
Hello.
In this case, you can see the Lewis structure on the attached picture, in which you can see that there are since xenon has 8 valance electrons and each chlorine has 7 valence electrons, the total amount of valence electrons is:
Valence electrons in XeCl2 = 8 + 7 + 7 = 22.
Moreover, since each chlorine atom is bonding with one of the eight electrons of xenon (Lewis structure), we can see there are 4 bonding electrons.
Finally, since there are six nonbonding electrons per chlorine atom and six nonbonding electrons in xenon, the overall nonbonding electrons are:
Nonbonding electrons in XeCl2 = 6 + 6 + 6 = 18.
Regards.