The radioactive uranium decays to produce thorium and it emits an alpha particle or helium atom. Thus, option A is correct.
Unstable heavy isotopes of elements undergo nuclear decay to produce stable atoms by the emission of charged particle such as alpha or beta particles.
Based on the emitted particle, there are two types of decay process namely alpha decay and beta decay. In alpha decay atoms emits alpha particles which are helium nuclei and the atom losses its mass number by 4 units and atomic number by two units,
In beta decay, electrons are emitted by the atom, where no change occurs in mass number and atomic number increases by one unit. Uranium undergo alpha decay by emitting alpha particle or helium nuclei.
To find more on alpha decay, refer here:
#SPJ6
Answer:
The correct answer is solid.
Explanation:
Based on the given information, it is evident that at 1 atm pressure and 49.9 degrees C the melting of the sample takes place, that is, the unknown sample transforms into the liquid at the mentioned temperature. It can also be said that below 49.9 degrees C, the sample stays at solid-state. From all this, we can also state that at temperature 49.9 degrees C, both the liquid and the solid-state of the sample stays at equilibrium.
As one goes higher, that is, above 49.9 degrees C and up to 209.5 degrees C, the sample remains at liquid state. However, the boiling point of the sample is 209.5 degrees C, which shows that the sample becomes gas above 209.5 degrees C. Thus, the sample remains at solid-state below 49.9 degrees C, at liquid state between 49.9 degrees C to 209.5 degrees C, and a gaseous state above 209.5 degrees C. Hence, if the temperature is 0 degrees C, then solid will be the state of matter for the sample.
Answer:
Compound X has the formula C8H14.
X reacts with one molar equivalent of hydrogen in the presence of a palladium catalyst to form a mixture of cis- and trans-1,2-dimethyl cyclohexane. Treatment of X with ozone followed by zinc in aqueous acid gives a ketone plus formaldehyde (CH2=O). What is the structure of X?
Explanation:
The degree of unsaturation in the given molecule C8H14 is:
DU=(Cn+1)-Hn/2-Xn/2+Nn/2
where,
Cn=number of carbon atoms
Hn=number of hydrogen atoms
Xn=number of halogen atoms
Nn=number of nitrogen atoms
C8H14:
DU=(8+1)-14/2
=>DU=9-7 =2
Hence, the given molecule will have either two double bonds or one double bond and one ring or two rings.
X reacts with one molar equivalent of hydrogen in the presence of a palladium catalyst to form a mixture of cis- and trans-1,2-dimethylcyclohexane.
This indicates that the molecule X has one double bond and one ring that is cyclohexane ring.
Treatment of X with ozone follwed by zinc in aqueous acid gives a ketone plus formaldehyde (CH2=O).
So, the molecule has a ring and double bond CH2.
Based on the given data the structure of compound X is shown below:
The reaction sequence is shown below:
Compound X, with the formula C8H14, reacts with hydrogen to form 1,2-dimethylcyclohexane. When treated with ozone and zinc, it yields a ketone and formaldehyde. Therefore, the structure of X is 1,2-dimethylcyclohexane.
X is a compound with the formula C8H14. The reaction of X with hydrogen in the presence of a palladium catalyst produces a mixture of cis- and trans-1,2-dimethylcyclohexane. When X is treated with ozone followed by zinc in aqueous acid, it forms a ketone and formaldehyde (CH2=O).
This information tells us that compound X is a cycloalkane with two methyl groups. Since it reacts with hydrogen to form 1,2-dimethylcyclohexane, we know that X must have a cyclohexane ring with two methyl groups at the 1 and 2 positions. The cis and trans isomers of 1,2-dimethylcyclohexane have different arrangements of the methyl groups relative to each other.
Thus, the structure of compound X is 1,2-dimethylcyclohexane.
#SPJ3
B) Solar power plants can be easily set up over small tracts of land.
Eliminate
C) Wastes from nuclear power plants are harmful and difficult to manage.
D) Solar energy is independent of season and can be easily trapped and stored.
Answer:
C
Explanation:
Wastes from nuclear power plants are harmful and difficult to manage.
Answer:
C
Explanation:
b. 72.8 g c2h6o in 2.34 l of solution
c. 12.87 mg ki in 112.4 ml of solution
The molarities of the given solutions: (a). 0.38 mol of LiNO₃ in 6.14 L of solution has a molarity of 0.062 M. (b). 72.8 g of C₂H₆O in 2.34 L of solution has a molarity of 0.675 M. (c). 12.87 mg of KI in 112.4 mL of solution has a molarity of 0.000688 M.
To calculate the molarity (M) of a solution, you can use the formula:
Molarity (M) = moles of solute / volume of solution (in liters)
a. 0.38 moles of LiNO₃ in 6.14 L of solution:
Molarity (M) = 0.38 moles / 6.14 L = 0.062 M
b. 72.8 grams of C₂H₆O (ethyl alcohol) in 2.34 L of solution:
First, you need to convert grams to moles using the molar mass of C₂H₆O.
Molar mass of C₂H₆O = 2(12.01 g/mol) + 6(1.01 g/mol) + 1(16.00 g/mol) = 46.08 g/mol
Now, calculate moles of C₂H₆O:
moles = 72.8 g / 46.08 g/mol = 1.58 moles
Molarity (M) = 1.58 moles / 2.34 L = 0.675 M
c. 12.87 mg of KI in 112.4 mL of solution:
First, convert milligrams to grams (1 g = 1000 mg):
12.87 mg = 12.87 g (since 12.87 mg / 1000 = 0.01287 g)
Now, convert mL to liters (1 L = 1000 mL):
112.4 mL = 0.1124 L
Calculate moles of KI:
Molar mass of KI = 39.10 g/mol (for K) + 126.90 g/mol (for I) = 166.00 g/mol
moles = 0.01287 g / 166.00 g/mol = 7.75 × 10⁻⁵ moles
Molarity (M) = (7.75 × 10⁻⁵ moles) / 0.1124 L = 0.000688 M
So, the molarities of the solutions are as follows:
a. 0.062 M
b. 0.675 M
c. 0.000688 M
To know more about moles:
#SPJ3
Which organism gains energy from eating the frog?
Which organism has the most available energy in this food chain?
Answer:
grass
snake
grass
Explanation:
just did it :)