In an experiment, one of the forces exerted on a proton is F⃗ =−αx2i^, where α=12N/m2. What is the potential-energy function for F⃗ ? Let U=0 when x=0. Express your answer in terms of α and x.

Answers

Answer 1
Answer:

Answer

\Delta U= \alpha (x^3)/(3) \n

Explanation:

given

F = -\alpha x^2 i  

where \alpha = 12 N/m^2

now we know

\int\limits^W_0 {} \, dW  = \int\limits^a_b {F.} \, dxi ..................(i)

where dx is infinitesimal distance

W = \int\limits^a_b {-\alpha x^2} \, dx \n  

for x = a and b = 0

after integration we get

W = -\alpha (x^3)/(3)  

we know work done by conservative force will be equals to negative of potential energy

W  = -\Delta U

so we get

-\Delta U= -\alpha (x^3)/(3) \n\n\Delta U= \alpha (x^3)/(3) \n


Related Questions

A ball with a mass of 170 g which contains 3.80×108 excess electrons is dropped into a vertical shaft with a height of 145 m . At the bottom of the shaft, the ball suddenly enters a uniform horizontal magnetic field that has a magnitude of 0.250 T and direction from east to west.A)If air resistance is negligibly small, find the magnitude of the force that this magnetic field exerts on the ball just as it enters the field.Use 1.602×10−19 C for the magnitude of the charge on an electron.B)Find the direction of the force that this magnetic field exerts on the ball just as it enters the field.a-from north to southb-from south to north
When the charges in the rod are in equilibrium, what is the magnitude EEE of the electric field within the rod
A local meteorologist reports the day’s weather. "Currently sunny outside, 34°F. Skies will become overcast later this afternoon, as temperatures drop to 25°F, with windy conditions out of the north at 10–15 miles per hour. Radar indicates 2–3 inches of snow expected to fall later tonight.” Which information is qualitative? These are non-numerical, descriptive data. These are numerical data that have been measured. “sunny” “25°F” “2–3 inches of snow” “10–15 miles per hour”
Two particles are traveling through space. At time t the first particle is at the point (−1 + t, 4 − t, −1 + 2t) and the second particle is at (−7 + 2t, −6 + 2t, −1 + t). (a) (5 Points) Do the paths of the two particles cross? If so, where?
Does lighting striking the earth considered the speed of light?

Why Coulomb force is called "Mutual Force"???????????????????????????????????????

Answers

Answer

The Columb's law is the same as Gravitational law

Explanation

As we see the formula of both Coulomb and Gravitational Law,

F_g = GM_1M_2/R_2     (1)

F_c = kq_1q_2/r_2         (2)

The masses (M) in formula (1) experiencing the force of gravitational pull with each other which varies with changing the distance. In the formula (2), the charges also are felling the forces on each other which varies with distance. The charges and masses are just like the objects which are experiencing the forces which have a common factor as distance. The gravitational force is also called the mutual forces.

Bailey wants to find out which frozen solid melts the fastest: soda, ice, or orange juice. She pours each of the three liquids into the empty cubes of an ice tray, and then places the ice tray in the freezer overnight. The next day, she pulls the ice tray out and sets each cube on its own plate. She then waits and watches for them to melt. When the last part of the frozen liquid melts, she records the time.

Answers

Answer:

its 45 over 6

Explanation:the answer is in  the question

Answer: Only the melted cube's shape changed.

Explanation:

A boy throws a snowball straight up in the air with an initial speed of 4.50 ft/s from a position 4.00 ft above the ground. The snowball falls straight back down in to a 6 inches of snow. The snowball feels a deceleration of 100 m/s2 upon impact with the snow bank before coming to rest. (a) When does the snowball hit the top of the snow bank? (b) How far from the ground does the snowball come a rest?

Answers

Answer:

a) 0.658 seconds

b) 0.96 inches

Explanation:

v=u+at\n\Rightarrow 0=4.5-32.1* t\n\Rightarrow (-4.5)/(-32.1)=t\n\Rightarrow t=0.14 \s

Time taken by the ball to reach the highest point is 0.14 seconds

s=ut+(1)/(2)at^2\n\Rightarrow s=4.5* 0.14+(1)/(2)* -32.1* 0.14^2\n\Rightarrow s=0.315\ ft

The highest point reached by the snowball above its release point is 0.315 ft

Total height the snowball will fall is 4+0.315 = 4.315 ft

s=ut+(1)/(2)at^2\n\Rightarrow 4.315=0t+(1)/(2)* 32.1* t^2\n\Rightarrow t=\sqrt{(4.315* 2)/(32.1)}\n\Rightarrow t=0.518\ s

The snowball will reach the bank at 0.14+0.518 = 0.658 seconds after it has been thrown

v=u+at\n\Rightarrow v=0+32.1* 0.518\n\Rightarrow v=16.62\ ft/s

v^2-u^2=2as\n\Rightarrow s=(v^2-u^2)/(2a)\n\Rightarrow s=(0^2-16.62^2)/(2* -100* 3.28)\n\Rightarrow s=0.42\ ft

The snowball goes 0.5-0.42 = 0.08 ft = 0.96 inches

When you walk at an average speed (constant speed, no acceleration) of 24 m/s in 94.1 secyou will cover a distance of__?

Answers

Answer:

2258.4 m

Explanation:

Distance covered is a product of speed and time hence

s=vt where s is the displacement/distance covered, v is the speed and t is the time taken

s=24*94.1=2258.4 m

Therefore, the distance covered is 2258.4 m

A 30 kg child on a 2 m long swing is released from rest when the swing supports make an angle of 34 ◦ with the vertical. The acceleration of gravity is 9.8 m/s 2 . If the speed of the child at the lowest position is 2.31547 m/s, what is the mechanical energy dissipated by the various resistive

Answers

Answer:

Energy dissipated = 13.453 Joules

Explanation:

In order to solve this problem, we first compute the gravitational potential energy the child has, and then find the kinetic energy at the lowest position.

The gravitational potential energy (relative to lowest position) is found as follows:

G.P.E = mass * gravity * height

Where,  Height = 2 - 2 * Cos(34°)

Height = 0.3193 meters

G.P.E = 30 * 9.8 * 0.3193

G.P.E = 93.874 J

Kinetic energy:

K.E = 0.5 * mass * velocity^2

K.E = 0.5 * 30 * 2.31547^2

K.E = 80.421 J

Energy dissipated = G.P.E - K.E

Energy dissipated = 93.874 - 80.421

Energy dissipated = 13.453 J

A 0.010 kg ball is shot from theplunger of a pinball machine.Because of a centripetal force of0.025 N, the ball follows a
circulararc whose radius is 0.29 m. What isthe speed of the
ball?

Answers

Answer:

v = 0.85 m/s

Explanation:

Given that,

Mass of the ball, m = 0.01 kg

Centripetal force on the ball, F = 0.025 N

Radius of the circular path, r = 0.29 m

Let v is the speed of the ball. The centripetal force of the ball is given by :

F=(mv^2)/(r)

v=\sqrt{(Fr)/(m)}

v=\sqrt{(0.025* 0.29)/(0.01)}

v = 0.85 m/s

So, the speed of the ball is 0.85 m/s. Hence, this is the required solution.