Answer:
Potassium (K) [First element in period 4]
Answer:
Well atomic number 17 is Chlorine, which is most commonly found as a gas, and is period 7.
Explanation:
elements found on period 7 are some of the most unstable elements.
Answer: A typical hydrogen fuel cell produces 0.5 V to 0.8 V per cell. To increase the voltage individual cells can be connected in series.
Answer: Option (c) is the correct answer.
Explanation:
Entropy is defined as the degree of randomness that is present within the particles of a substance.
As is ionic in nature. Hence, when it is added to water then it will readily dissociate into ammonium ions () and nitrate ions ().
Therefore, it means that ions of ammonium nitrate will be free to move from one place to another. Hence, there will occur an increase in entropy.
Thus, we can conclude that ammonium nitrate () dissolve readily in water even though the dissolution process is endothermic by 26.4 kJ/mol because the overall entropy of the system increases upon dissolution of this strong electrolyte.
The substance that is used for the industrial preparation of methyl diantilis is called the sodium borohydride (NaBH4).
Methyl diantilis is a substance that has an elegant fragrance with a similar olfactive note to Isoeugenol.
It is used as complexing agent for vanilla, tobacco, leather and fruit accords.
It can be prepared industrially by the reduction of 3-ethoxy-4-hydroxybenzaldehyde (ethyl vanillin) to 3-ethoxy-4-hydroxybenzyl alcohol.
To reduce the aldehyde group of 3-ethoxy-4-hydroxybenzaldehyde, sodium borohydride is added in the industrial preparation process.
The sodium borohydride (NaBH4) produces a phenol functional group with other reactants leading to reduction of aldehyde group and increase in the solubility of reactants.
Therefore, the substance that is used for the industrial preparation of methyl diantilis is called the sodium borohydride (NaBH4).
Learn more about aldehydes here:
Answer:
Sodium Borohydride (NaBH₄)
Explanation:
Methyl diantilis (2-Ethoxy-4-(methoxymethyl)phenol) is a fragrance compound which smells like Vanilla. This compound is being synthesized from 3-ethoxy-4-hydroxybenzaldehyde also known as Ethyl Vanillin in two steps.
Step 1: Reduction of Aldehydic Group on Ethyl Vanillin:
The benzaldehyde derivative is treated with a mild reducing agent i.e. NaBH₄ (Sodium Borohydride). NaBH₄ is a source of Hydride (H⁻) ion and undergoes nucleophilic substitution reaction yielding 2-ethoxy-4-(hydroxymethyl)phenol.
Step 2: Etherification of 2-ethoxy-4-(hydroxymethyl)phenol:
In the second step 2-ethoxy-4-(hydroxymethyl)phenol is treated with Methanol in the presence of strong acidic polymeric resin known as Amberlyst-15-wet resulting in the formation of Methyl diantilis as shown in attached figure.
Answer:
A. 1 J=1kg•m^2/s^2
Explanation:
Energy refers to the capacity to do work. According to the International System of units (SI units), energy is measured in Joules.
Energy is represented by the force applied over a distance. Force is measured in Newton (N) and distance in metres (m). Hence, energy is Newton × metre (N.m)
Newton is derived from the SI units of mass (Kilograms), and acceleration (metres per seconds^2) i.e Kg.m/s^2, since Force = mass × acceleration.
Since; Energy = Newton × metres
If Newton = Kg.m/s^2 and metres = m
Energy (J) will therefore be; Kg.m/s^2 × m
1J = Kg.m^2/s^2
The enthalpy change of the reaction indicates that it is an endothermic process.
FURTHER EXPLANATION
Enthalpy (ΔH) is the amount of heat absorbed or released in a reaction. It is based on the amount of energy needed to break the bonds and the energy released during bond formation. Enthalpy change is the difference in the enthalpy of the reactants and the products. The positive or negative sign for an enthalpy value indicates the direction of the heat flow: a positive ΔH indicates that the reaction is endothermic while a negative value for ΔH means that the reaction is exothermic.
Endothermic Reactions
Endothermic reactions are reactions that absorb heat from the surroundings to the system. This is the case when more energy is absorbed to break the bonds than is released to form the bonds. Endothermic reactions can be identified in the lab by observing if the reaction vessel becomes cooler as the reaction proceeds.
Exothermic Reactions
When the amount of energy released during bond formation is greater than the amount of energy absorbed during bond breaking, a net release of energy to the surroundings takes place and the reaction is exothermic. Exothermic reactions can be identified when the reaction vessel becomes hot as the reaction progresses.
LEARN MORE
Keywords: Endothermic, Exothermic, Enthalpy