Explanation:
Below is an attachment containing the solution to the question.
Answer: The daughter nuclei is
Explanation:
Electron capture is defined as the process in which an electron is drawn to the nucleus where it combines with a proton to form a neutron and a neutrino particle.
The chemical equation for the reaction of electron capture of Zinc-63 nucleus follows:
The parent nuclei in the above reaction is Zinc-63 and the daughter nuclei produced in the above reaction is copper-63 nucleus.
Hence, the daughter nuclei is
When Zinc-63 undergoes electron capture, it results in the creation of a Copper-63 daughter nucleus. This is due to the atomic number decreasing by one (from 30 to 29) during electron capture, but the mass number remaining unchanged.
Electron capture is a process where a proton-rich nucleus absorbs an inner shell electron, which results in a conversion of a proton into a neutron, and the emission of an electron neutrino. In doing so, the atomic number decreases by one, while the mass number stays the same. Therefore, in the case of 63 Zn (zinc-63), the atomic number is 30 prior to electron capture. After electron capture, the atomic number will decrease by one to become 29, leading to the production of 63 Cu (copper-63).
Remember that the atomic number (bottom number), also known as the proton number, determines the element. Therefore, in our example, Zn changes to Cu. The fact that the mass number (top number) remains the same is due to the total number of protons and neutrons (nucleons) being conserved.
#SPJ11
Answer:
pH = 2.059
Explanation:
At the Cathode:
The reduction reaction is:
At the anode:
At oxidation reaction is:
The overall equation for the reaction is:
The overall cell potential is:
Using the formula for the Nernst equation:
where;
E = 0.66
(Zn^2+)=0.22 M
Then
3.4 = log ( 0.1914) - 2 log [H⁺]
3.4 = -0.7180 - 2 log [H⁺]
3.4 + 0.7180 = - 2 log [H⁺]
4.118 = - 2 log [H⁺]
pH = log [H⁺] = 4.118/2
pH = 2.059
The pH of the solution as described in the question is 2.7.
The equation of the reaction is;
Zn(s) + 2H^+(aq) ----> Zn^2+(aq) + H2(g)
The partial pressure of hydrogen can be converted to molarity using;
P= MRT
M = P/RT
M = 0.87atm/0.082 LatmK-1mol-1 × 298 K = 0.036 mol/L
We have to obtain the reaction quotient
Q = [Zn^2+] [H2]/[H^+]^2
Q = [0.22 ] [0.036]/[H^+]^2
Recall that, from Nernst equation;
E = E° - 0.0592/nlog Q
E° = 0.00V - (-0.76V) = 0.76V
0.660 = 0.76 - 0.0592/2logQ
0.660 - 0.76 = - 0.0592/2logQ
-0.1 = - 0.0592/2logQ
-0.1 × 2/ - 0.0592 = logQ
3.38 = log Q
Q = Antilog (3.38)
Q= 2.39 × 10^3
Now;
2.39 × 10^3 = [0.22 ] [0.036]/[H^+]^2
2.39 × 10^3 = 7.92 × 10^-3/[H^+]^2
[H^+]^2 = 7.92 × 10^-3/2.39 × 10^3
[H^+] = 1.82 × 10^-3
pH = -log[H^+]
pH = -log[ 1.82 × 10^-3]
pH = 2.7
Learn more: brainly.com/question/11897796
Answer:
1chemical properties
2.chrmistry
3.precipitate
4.endothermic reaction
5.matter
6.physical property
7.chemical change
8.exothermic reaction
9.physical change
b. 1.50 x 1023 atoms Mg
c. 4.50 x 1012 atoms Cl
d. 8.42 x 1018 atoms Br
e. 25 atoms W
f. 1 atom Au
The mass in grams of 3.011 x 10²³ atoms of F is 9.5 g.
The mass in grams of 1.50 x 10²³ atoms of Mg is 5.98 g.
The mass in grams of 4.50 x 10¹² atoms of Cl is 2.65 x 10⁻¹⁰ g.
The mass in grams of 8.42 x 10¹⁸ atoms of Br is 1.12 x 10⁻³ g.
The mass in grams of 25 atoms of W is 3.1 x 10⁻²¹ g.
The mass in grams of 1 atom of Au is 3.27 x 10⁻²² g.
The mass in grams of 3.011 x 10²³ atoms of F is calculated as follows;
6.023 x 10²³ atoms = 19 g of F
3.011 x 10²³ atoms F = ?
= (3.011 x 10²³ x 19 g)/(6.023 x 10²³)
= 9.5 g
The mass in grams of 1.50 x 10²³ atoms of Mg is calculated as follows;
6.023 x 10²³ atoms = 24g of Mg
1.5 x 10²³ atoms F = ?
= (1.5 x 10²³ x 24 g)/(6.023 x 10²³)
= 5.98 g
The mass in grams of 4.50 x 10¹² atoms of Cl is calculated as follows;
6.023 x 10²³ atoms = 35.5 g of Cl
4.5 x 10²³ atoms Cl = ?
= (4.5 x 10¹² x 35.5 g)/(6.023 x 10²³)
= 2.65 x 10⁻¹⁰ g
The mass in grams of 8.42 x 10¹⁸ atoms of Br is calculated as follows;
6.023 x 10²³ atoms = 80 g of Br
8.42 x 10¹⁸ atoms Br = ?
= (8.42 x 10¹⁸ x 80 g)/(6.023 x 10²³)
= 1.12 x 10⁻³ g
The mass in grams of 25 atoms of W is calculated as follows;
6.023 x 10²³ atoms = 74 g of W
25 atoms W = ?
= (25 x 74 g)/(6.023 x 10²³)
= 3.1 x 10⁻²¹ g
The mass in grams of 1 atom of Au is calculated as follows;
6.023 x 10²³ atoms = 197 g of Au
1 atom of Au = ?
= (1 x 197 g)/(6.023 x 10²³)
= 3.27 x 10⁻²² g
Learn more about atomic mass here: brainly.com/question/338808
#SPJ1
This solution provides the calculations necessary to convert the number of atoms of various elements (smallest particle of an element) to grams. It does so by using the molar mass of each element and Avogadro's number.
The mass of atoms can be determined by using Avogadro's number (6.022 x 1023 atoms/mol) and the molar mass of the specific element (g/mol). We use these to create a conversion factor and multiply by the number of atoms given.
#SPJ3
Answer: The boiling point of solution is 100.53
Explanation:
We are given:
8.00 wt % of CsCl
This means that 8.00 grams of CsCl is present in 100 grams of solution
Mass of solvent = (100 - 8) g = 92 grams
The equation used to calculate elevation in boiling point follows:
To calculate the elevation in boiling point, we use the equation:
Or,
where,
Boiling point of pure solution = 100°C
i = Vant hoff factor = 2 (For CsCl)
= molal boiling point elevation constant = 0.51°C/m
= Given mass of solute (CsCl) = 8.00 g
= Molar mass of solute (CsCl) = 168.4 g/mol
= Mass of solvent (water) = 92 g
Putting values in above equation, we get:
Hence, the boiling point of solution is 100.53
Answer:
53.1 mL NaOH
Explanation: