You must walk approximately 0.2685 m, or 26.85 cm, towards speaker B to encounter the first point of destructive interference. This calculation is arrived at by determining the half-wavelength of the sound wave.
Interference occurs when two sound waves from the same source meet. When they constructively interfere, their amplitudes add together creating a louder sound, while when they destructively interfere, they cancel each other out creating a point of silence. Since you are initially in a position of constructive interference, you need to move towards speaker B at a distance that would change the path length difference to be equivalent to a half wavelength.
To find this distance, we first need to find the wavelength from the frequency. The formula for this is:
Given the speed of sound is 344 m/s and the frequency is 641 Hz, we find the wavelength to be roughly 0.537 m. A half wavelength, which characterizes the distance needed for destructive interference from total constructive interference, would then be 0.2685 m.
You must walk approximately 0.2685 m, or 26.85 cm, towards speaker B to encounter the first point of destructive interference.
#SPJ12
To find the distance at which the first point of destructive interference occurs, divide the wavelength by 2. In this case, the distance is approximately 0.268 meters or 26.8 centimeters. Therefore, you would need to walk about 26.8 centimeters toward speaker B to reach the first point of destructive interference.
To determine the distance at which the first point of destructive interference occurs, we need to understand the concept of interference and the conditions for constructive and destructive interference. Constructive interference occurs when the waves from both speakers are in phase and add up to create a larger amplitude. Destructive interference occurs when the waves from both speakers are out of phase and cancel each other out, resulting in a smaller amplitude. In this case, since the speakers are emitting waves in phase, the distance at which destructive interference occurs is equal to half the wavelength of the waves.
The wavelength of a wave can be calculated using the formula:
Wavelength = Speed of sound / Frequency
In this case, the frequency is given as 641 Hz and the speed of sound is given as 344 m/s. Plugging in these values into the formula, we get:
Wavelength = 344 m/s / 641 Hz
Solving this, we find that the wavelength is approximately 0.536 meters. To find the distance to the first point of destructive interference, we divide the wavelength by 2:
Distance to first point of destructive interference = Wavelength / 2
Plugging in the calculated wavelength, we get:
Distance to first point of destructive interference = 0.536 meters / 2
Simplifying, we find that the distance is approximately 0.268 meters or 26.8 centimeters. Therefore, you would need to walk about 26.8 centimeters toward speaker B to reach the first point of destructive interference.
#SPJ2
Answer:
a = 5.53 g , a = -15g
Explanation:
This is an exercise in kinematics.
a) Let's look for the acceleration
as part of rest v₀ = 0
v = v₀ + a t
a = v / t
a = 282 / 5.2
a = 54.23 m / s²
in relation to the acceleration of gravity
a / g = 54.23 / 9.8
a = 5.53 g
b) let's look at the acceleration to stop
va = 0
0 = v₀ -2 a y
a = vi / y
a = 282/2 1
a = 141 m /s²
a / G = 141 / 9.8
a = -15g
From a mathematical point of view, the Schrödinger Equation is a LINEAR partial differential equation, as is a partial differential equation that is defined by a linear polynomial in the solution and its derivatives.
For a linear differential equation, if you got two different solutions and , then the linear combination , where and are scalars, is also a solution.
This also is valid for only one solution (think of the other solution as equal to zero, ). So, as the Schrödinger Equation is a Linear partial differential equation, then if is a solution, then must also be a solution.
This is extremely important for physicist, as let us know that the superposition principle is valid.
(B) If the acceleration of object moving along a line is always 0, then its velocity is constant.
(C) It is impossible for the instantaneous velocity at all times a(D) A moving object can have negative acceleration and increasing speed.
Answer:
Explanation:(A)if a body is accelerating then it's velocity can't be constant since an object is said to be accelerating if it is changing velocity (B)if the acceleration of an object moving along a line is 0 then it's velocity will be constant since there is no change in direction or speed(C)No.it is not possible for a moving body to have an instantaneous velocity at all times since instantaneous velocity is the velocity of a body at a certain instant of time..(D)Yes a moving object can have a negative acceleration and increasing speed,it can also have a positive acceleration with decreasing speed.
To calculate the quantity of heat that must be removed from 6.1 g of 100°C steam, we need to consider both the change in temperature and the phase change from steam to liquid. The specific heat of water is used to calculate the heat required to lower the temperature, while the heat of vaporization is used to calculate the heat required to condense the steam. Adding these two heat values together gives us the total amount of heat that must be removed from the steam, which is approximately 3.61164 kcal.
When steam at 100°C condenses and its temperature is lowered to 46°C, heat must be removed from the steam. To calculate the amount of heat, we can use the specific heat of steam and the latent heat of vaporization. First, we calculate the heat required to lower the temperature of the steam from 100°C to 46°C using the specific heat of water. We then calculate the heat required to condense the steam using the latent heat of vaporization. Finally, we add these two heat values together to obtain the total amount of heat that must be removed from the steam.
Given:
Calculations:
Calculation:
Therefore, the quantity of heat that must be removed from 6.1 g of 100°C steam to condense it and lower its temperature to 46°C is approximately 3.61164 kcal.
#SPJ12
To condense and cool 6.1 g of 100°C steam to 46°C, 3.2879 kcal must be removed for condensation, and 0.3304 kcal for cooling, for a total of 3.6183 kcal.
Calculating the Quantity of Heat for Condensation and Cooling
To calculate the quantity of heat that must be removed from 6.1 g of 100°C steam to condense it and lower its temperature to 46°C, we need to consider two processes: condensation and cooling. For condensation, we use the heat of vaporization, and for cooling, we use the specific heat of water.
Total heat removed is the sum of the heat from both steps: 3.2879 kcal + 0.3304 kcal = 3.6183 kcal.
#SPJ3
The rate of change of angulardisplacement is defined as angular velocity. The angular velocity will be 22.41rad/s.
The rate of change of angular displacement is defined as angular velocity. Its unit is rad/sec.
ω = θ t
Where,
θ is the angle of rotation,
tis the time
ω is the angular velocity
The given data in the problem is;
u is the initialvelocity=0
α is the angularacceleration = 4.0 rad/s²
t is the time period=
n is the number of revolution = 10 rev
From Newton's second equation of motion in terms of angular velocity;
Hence the angular velocity will be 22.41 rad/s.
To learn more about angularvelocity refer to the link
Answer:
= 22.41rad/s
Explanation:
First, we know that:
a = 4 rad/s^2
S = 10 rev = 62.83 rad
Now we know that:
where is the final angular velocity, the initial angular velocity, a is the angular aceleration and S the radians.
Replacing, we get:
Finally, solving for :
= 22.41rad/s
Answer:
12.15°
Explanation:
Using Snell's law as:
Where,
is the angle of incidence ( 14.0° )
is the angle of refraction ( ? )
is the refractive index of the refraction medium (n=1.46)
is the refractive index of the incidence medium (n=1.27)
Hence,
Angle of refraction = = 12.15°
Answer:
M
Explanation: