Answer
given,
speed of sound = 344 m/s
speed of train = 30 m/s
frequency emitted by the train = 262 Hz
Doppler's effect
f_L is the frequency of listener
f_S is the frequency of the source of the sound
v is the speed of the sound
v_L is the speed of listener.
v_S is the speed of the source
a) Speed of the passenger in another train , v = 18 m/s
another train is moving in opposite direction and approaching
v_L is positive as the listener is moving forward.
v_S is negative at the source is moving toward the listener.
b) Speed of the passenger in another train , v = 18 m/s
another train is moving in opposite direction and receding
v_L is negative as the listener is moving away from source.
v_S is positive at the source is moving away the listener.
Answer:
w =
Explanation:
For this exercise let's start by applying Newton's second law to the mass with the string
W - T = m a
In this case, as the system is going down, we will assume the vertical directional down as positive.
T = W - m a
Now we apply Newton's second law for rotational motion to the pulley of radius r. We will assume the positive counterclockwise rotations
∑ τ = I α
T r = I α
the moment of inertia of the disk is
I = ½ M R²
angular and linear acceleration are related
a = α r
we substitute
T r = (½ m R²) (a / r)
T = ½ m ( )² a
we write our two equations
T = W - m a
T = ½ m ( )² a
we solve the system of equations
W - m a = ½ m (\frac{R}{r} )² a
m g = m a [ 1 + ½ (\frac{R}{r} )² ]
a =
this acceleration is constant throughout the trajectory, so with the angular and lineal kinematics relations
w² = w₀² + 2 α θ
v² = v₀² + 2 a y
as the system is released its initial angular velocity is zero
w² = 0 + 2 α θ
v² = 0 + 2 a y
we look for the angular acceleration
a =α r
α = a / r
α =
we look for the angle, remember that they must be measured in radians
θ = s / r
in this case we approximate the arc to the distance
s = y
θ = y / r
we substitute
w =
w =
for the simple case where r = R
w =
w =
Answer: The volume is decreasing at a rate of 80 cm3/min
Explanation: Please see the attachments below
Answer: 80 cm³/min
Explanation:
Just solved it
Answer:
Explanation:
Given the initial temperature T_i=2° C
final temperature T_f= 32° C
The original volume of water Vo=268.8 mL= 0.2688 L
we need to calculate the change in the volume
As we know that volume expansion is given by
ΔV= change in Volume
β= expansion coefficient =
therefore,
plugging values we get
Answer:
Explanation:
The period is defined as the time taken by an object to complete a cycle in a simple harmonic motion. As the frequency of the motion increases, the period decreases. Therefore, they are inversely proportional. The frequency does not depend on the mass of the object.
Answer:
The angular velocity is 15.37 rad/s
Solution:
As per the question:
Horizontal distance, x = 30.1 m
Distance of the ball from the rotation axis is its radius, R = 1.15 m
Now,
To calculate the angular velocity:
Linear velocity, v =
v =
v =
v =
Now,
The angular velocity can be calculated as:
Thus