A rocket exhausts fuel with a velocity of 1500m/s, relative to the rocket. It starts from rest in outer space with fuel comprising 80 per cent of the total mass. When all the fuel has been exhausted its speed is:________

Answers

Answer 1
Answer:

The speed when all the fuel has been exhausted is 2415m/s

  • According to this question, the following information was given:

  1. Exhaust velocity of fuel, V(e)= 1500 m/s
  2. Initial speed of rocket, V₁ = 0 m/s
  3. Final speed of rocket, V₂ = ?
  4. Fuel weight = 80% of total weight

  • Using Tsiolkovsky rocket equation as follows:

∆V = V(e) ln(m1/m2)

  1. m1 = initial mass
  2. m2 = final mass without repellant

  • m2 = m1 - 80%m1

  • m2 = m1 - 0.8m1

  • m2 = 0.2m1

  • ∆V = V2 - V1

Hence;

  • V2 - 0 = 1500 × ln (m1/0.2m1)

  • V2 = 1500 ln(1/0.2)

  • V2 = 1500 × 1.609

  • V2 = 2415m/s.

  • Therefore, the speed when all the fuel has been exhausted is 2415m/s.

Learn more at: brainly.com/question/19531823?referrer=searchResults

Answer 2
Answer:

Answer:

v_2 =2414\ m/s

Explanation:

given,

exhaust velocity of fuel(v_e) = 1500 m/s

initial speed of rocket,v₁ = 0 m/s

final speed of rocket, v₂ = ?

fuel weigh = 80 % of total weight

using  Tsiolkovsky rocket equation

\Delta v = v_e ln((m_1)/(m_2))

Δ v = v₂ - v₁

v_e is the exhaust speed

m₁ is the  initial total mass.

m₂ is the is the final total mass without propellant.

m₂  = m₁ - 0.8 m₁

m₂  = 0.2 m₁

v_2-v_1 = 1500* ln((m_1)/(0.2 m_1))

v_2 = 1500* ln((m_1)/(0.2 m_1))

v_2 =2414\ m/s

When all the fuel is exhausted speed of the fuel is equal to v_2 =2414\ m/s


Related Questions

A car (m = 2000 kg) is going around an unbanked curve at the recommended speed of 11m/s (24.6 MPH). (a) If the radius of the curvature of the path is 25m and the coefficient of static friction between the rubber tires and the road is µs = 0.70, does the car skid as it goes around the curve? (b) What will happen if the driver ignores the highway speed limit sign and travels at 18 m/s (40.3 MPH)? (c) What speed is safe for traveling around the curve if the road surface is wet from a recent rainstorm and the coefficient of static friction between the wet roud and the rubber tires is µs = 0.50?
The rms speed of the molecules in 1.3 g of hydrogen gas is 1600 m/s.Part A. What is the total translational kinetic energy of the gas molecules? Part B. What is the thermal energy of the gas? Part C. 500J of work are done to compress the gas while, in the same process, 2000J of heat energy are transferred from the gas to the environment. Afterward, what is the rms speed of the molecules?
What is an atomic nucleus​
The Mistuned Piano Strings Two identical piano strings of length 0.800 m are each tuned exactly to 480 Hz. The tension in one of the strings is then increased by 1.0%. If they are now struck, what is the beat frequency between the fundamentals of the two strings? SOLUTION Conceptualize As the tension in one of the strings is changed, its fundamental frequency changes. Therefore, when both strings are played, they will have different frequencies and beats be heard. Categorize We must combine our understanding of the waves model for strings with our new knowledge of beats.
A sinusoidal wave is travelling on a string under tension T = 8.0(N), having a mass per unit length of 1 = 0.0128(kg/m). It’s displacement function is D(x,t) = Acos(kx - t). It’s amplitude is 0.001m and its wavelength is 0.8m. It reaches the end of this string, and continues on to a string with 2 = 0.0512(kg/m) and the same tension as the first string. Give the values of A, k, and , for the original wave, as well as k and  the reflected wave and the transmitted wave.

Two particles are traveling through space. At time t the first particle is at the point (−1 + t, 4 − t, −1 + 2t) and the second particle is at (−7 + 2t, −6 + 2t, −1 + t). (a) (5 Points) Do the paths of the two particles cross? If so, where?

Answers

Answer:

Yes, the paths of the two particles cross.

Location of path intersection = ( 1 , 2 , 3)

Explanation:

In order to find the point of intersection, we need to set both locations equal to one another. It should be noted however, that the time for each particle can vary as we are finding the point where the paths meet, not the point where the particles meet themselves.

So, we can name the time of the first particle T_F ,  and the time of the second particle T_S.

Setting the locations equal, we get the following equations to solve for T_F and T_S:

(-1 + T_F) = (-7 + 2T_S)                     Equation 1

(4 - T_F) = (-6 + 2T_S)                        Equation 2

(-1 + 2T_F) = (-1 + T_S)                     Equation 3

Solving these three equations simultaneously we get:

T_F = 2 seconds

T_S = 4 seconds

Since, we have an answer for when the trajectories cross, we know for a fact that they indeed do cross.

The point of crossing can be found by using the value of T_For T_Sin the location matrices. Doing this for the first particle we get:

Location of path intersection = ( -1 + 2 , 4 - 2 , -1 + 2(2) )

Location of path intersection = ( 1 , 2 , 3)

A loop of wire lies flat on the horizontal surface in an area with uniform magnetic field directed vertically up. The loop of wire suddenly contracts to half of its initial diameter. As viewed from above induced electric current in the loop isa. counterclockwiseb. clockwisec. there is no current in the loop because magnetic field is uniformd. there is no current in the loop because magnetic field does not change

Answers

Complete Question

A loop of wire lies flat on the horizontal surface in an area with uniform magnetic field directed vertically up. The loop of wire suddenly contracts to half of its initial diameter. As viewed from above induced electric current in the loop is

a. counterclockwise

b. clockwise

c. there is no current in the loop because magnetic field is uniform

d. there is no current in the loop because magnetic field does not change

Answer:

Option A is the correct answer

Explanation:

According to the question the loop of wire contracts to half it initial diameter and will mean that less number of electric field line will pass through the loop and this change in magnetic flux will cause current to flow in the loop of wire and from Lenz's law this current will in the opposite direction of what produced it which is the change in magnetic flux so the current will flow in a counterclockwise direction  

Please give the answer

Answers

Answer:

75

Explanation:

just took it e2020

Answer:

60%

Explanation:

efficiency= useful/input x 100%,

Here, kinetic energy is useful for food processor (i.e. spinning blades)

600J/1000J=60%

The electron gun in an old CRT television accelerates electrons between two charged parallel plates (the cathode is negative; the anode is positive) 1.2 cm apart. The potential difference between them is 25 kV. Electrons enter through a small hole in the cathode, are accelerated, and then exit through a small hole in the anode. Assume the plates act as a capacitor.a. What is the electric field strength and direction between the plates?
b. With what speed does an electron exit the electron gun if its entry speed is close to zero? [Note: ignore relativity]
c. If the capacitance of the plates is 1 nF, how much charge is stored on each plate? How many extra electrons does the cathode have?
d. If you wanted to push an electron from the anode to the cathode, how much work would you have to do?

Answers

Answer:

A. 2.083 MV/m from anode to cathode.

B. 93648278.15 m/s

C. 2.5x10^-5 C and there are about 1.56x10^14 electrons

D. 4x10^-15 Joules

Explanation:

Voltage V across plate is 25 kV = 25x10^3 V

Distance apart x = 1.2 cm = 1.2x10^-2 m

A. Electric field strength is the potential difference per unit distance

E = V/x = 25x10^3/1.2x10^-2 = 2083333.3 V/m

= 2.083 MV/m

B. Energy of electron is electron charge times the voltage across

i.e eV

Charge on electron = 1.6x10^-19 C

Energy of electron = 1.6x10^-19 x 25x10^3 = 4x10^-15 Joules

Mass of electron m is 9.12x10^-31 kg

Kinetic energy of electron = 0.5mv^2

Where v is the speed

4x10^-15 = 0.5 x 9.12x10^-31 x v^2

v^2 = 8.77x10^15

v = 93648278.15 m/s

C. From Q = CV

Q = charge

C = capacitance = 1 nF 1x10^-9 F

V = voltage = 25x10^3 V

Q = 1x10^-9 x 25x10^3 = 2.5x10^-5 C

Total number of electrons = Q/e

= 2.5x10^-5/1.6x10^-19 = 1.56x10^14 electrons

D. To push electron from cathode to anode, I'll have to do a work of about

4x10^-15 Joules

A white blood cell has a diameter of approximately 12 micrometers or 0.012 um a model represents its diameter as 24 um what ratio of model size

Answers

Answer:

The ratio of the model size is 1 : 2000

Explanation:

Given

Real Diameter =  0.012 um

Scale Diameter =  24 um

Required

Determine the scale ratio

The scale ratio is calculated as follows;

Scale = (Real\ Measurement)/(Scale\ Measurement)

Substitute values for real and scale measurements

Scale = (0.012\ um)/(24\ um)

Divide the numerator and the denominator by 0012um

Scale = (1)/(2000)

Represent as ratio

Scale = 1 : 2000

Hence, the ratio of the model size is 1 : 2000

The ratio of the model size to the actual size is 1 : 2000. This means the model represents the white blood cell's diameter 2000 times larger than its actual size.

The ratio of the model size to the actual size can be calculated using the given measurements:

Actual Diameter = 0.012 um

Model Diameter = 24 um

Ratio = Model Diameter / Actual Diameter

Ratio = 24 um / 0.012 um

Ratio = 2000

So, the ratio of the model size to the actual size is 1 : 2000. This means the model represents the white blood cell's diameter 2000 times larger than its actual size.

Learn more about white blood from the link given below.

brainly.com/question/30712922

#SPJ3

A piston-cylinder device contains 5 kg of refrigerant-134a at 0.7 MPa and 60°C. The refrigerant is now cooled at constant pressure until it exists as a liquid at 24°C. If the surroundings are at 100 kPa and-24°C, determine: (a) the exergy of the refrigerant at the initial and the final states and
(b) the exergy destroyed during this process.

Answers

A) The exergy of the refrigerant at the initial and final states are :

  • Initial state =  - 135.5285 kJ
  • Final state =  -51.96 kJ

B) The exergy destroyed during this process is : - 1048.4397 kJ

Given data :

Mass ( M )  = 5 kg

P1 = 0.7 Mpa = P2

T1 = 60°C = 333 k

To = 24°C = 297 k

P2 = 100 kPa

A) Determine the exergy at initial and final states

At initial state :

U = 274.01 kJ/Kg , V = 0.034875 m³/kg , S = 1.0256 KJ/kg.k

exergy ( Ф ) at initial state = M ( U + P₂V - T₀S )

                                           = 5 ( 274.01 + 100* 10³ * 0.034875 - 297 * 1.0256)

                                           ≈ - 135.5285 kJ

At final state  :

U = 84.44 kJ / kg , V = 0.0008261 m³/kg,  S = 0.31958 kJ/kg.k

exergy ( ( Ф ) at final state = M ( U + P₂V - T₀S )

                                             = -51.96 kJ

B) Determine the exergy destroyed

  exergy destroyed = To * M ( S2 - S1 )

                                 = 297 * 5 ( 0.31958 - 1.0256 )

                                 = - 1048.4397 KJ

Hence we can conclude that A) The exergy of the refrigerant at the initial and final states are : Initial state =  - 135.5285 kJ, Final state =  -51.96 kJ  and The exergy destroyed during this process is : - 1048.4397 kJ

Learn more about exergy : brainly.com/question/25534266

Final answer:

Exergy of refrigerant-134a at initial and final states is obtained from property tables and by multiplying the mass of the refrigerant with its specific exergy at each state. The difference in exergy between the two states represents the exergy destroyed.

Explanation:

To solve the given question, we need the property values of

refrigerant-134a

at the initial and the final states.

At an initial state of 0.7 MPa and 60°C, the specific exergy for refrigerant-134a can be obtained from property tables which are standard in thermodynamics textbooks. Same for the final state at 0.7 MPa and 24°C, the specific exergy can be obtained from the same property tables.

The exergy of the refrigerant at the initial and the final states can be calculated by multiplying the mass of the refrigerant with its specific exergy at each state.

Exergy destruction during this process can be calculated using the relation between exergy change and exergy destruction. The exergy change of a system between initial and final states is equal to the difference of the exergy of the system at final and initial states.

Based on the second law of thermodynamics, the difference in exergy should be equal to the exergy destroyed during the process.

Learn more about Exergy of Refrigerant here:

brainly.com/question/24198897

#SPJ3