How many joules of work are done on an object when a force of 10 N pushes it 5 m?A) 2 J
B) 5 J
C) 50 J
D) 1 J
E) 10 J

Answers

Answer 1
Answer:

Answer:

option C

Explanation:

given,                            

Force on the object = 10 N

distance of push = 5 m

Work done = ?              

we know,              

work done is equal to Force into displacement.

W = F . s            

W = 10 x 5              

W = 50 J                

Work done by the object when 10 N force is applied is equal to 50 J

Hence, the correct answer is option C

Answer 2
Answer:

Final answer:

The work done on an object when a force of 10 N pushes it 5 m is 50 Joules, calculated by multiplying the force and the displacement. So, the correct option is C.

Explanation:

The question is asking about work, which in physics is the result of a force causing a displacement. The formula for work is defined as the product of the force (in Newtons) and the displacement (in meters) the force causes. If a force of 10 N pushes an object a distance of 5 m, the work done is calculated by multiplying the force and the displacement (10 N * 5 m), yielding 50 Joules of work.

Therefore, the correct answer is 50 J (C).

Learn more about Work here:

brainly.com/question/31965083

#SPJ6


Related Questions

An electron is moving through an (almost) empty universe at a speed of 628 km,/s toward the only other object in the universe — an insulating sphere with a diameter of 4 m and charge density 3nC/m2 on its outside surface. The sphere "captures" the electron, which falls into a circular orbit. Required:Find the radius and period of the orbit.
How do impacts by comets and asteroids influence Earth’s geology, its atmosphere, and the evolution of life?
Ball 1 is launched with an initial vertical velocity v1 = 146 ft/sec. Ball 2 is launched 2.3 seconds later with an initial vertical velocity v2. Determine v2 if the balls are to collide at an altitude of 234 ft. At the instant of collision, is ball 1 ascending or descending?
A river 500 ft wide flows with a speed of 8 ft/s with respect to the earth. A woman swims with a speed of 4 ft/s with respect to the water.1) If the woman heads directly across the river, how far downstream is she swept when she reaches the opposite bank?2) If she wants to be swept a smaller distance downstream, she heads a bit upstream. Suppose she orients her body in the water at an angle of 37° upstream (where 0° means heading straight accross, how far downstream is she swept before reaching the opposite bank?3) For the conditions, how long does it take for her to reach the opposite bank?
A ball with radius .15 m is rolling with an angular velocity of 6.5 rad/s. (a) What linear distance will the ball roll in 5.0 seconds? The ball then slows down with a linear acceleration of -1.2 rad/s2. (B) How fast will it be rolling rad/s after .65 second? (C) If a piece of gum is stuck on the outer part of the ball, what is its linear speed? (4.9, 5.72, .858)

Which of the following is a description of the Remote Associates Test (RAT)?

Answers

Answer:

The description is outlined throughout the clarification section following, and according to the given word.

Explanation:

  • Throughout the 1960s, Sarnoff Mednick created the RAT as a tool used for testing imaginative convergent thought. Through each RAT test query lists a set of terms, which demands that we have a single additional term that will tie any of the others around.  
  • Those other words may also be related in something like a variety of ways, such as through creating a compound word or perhaps a semantic connexon.

An object rests on a horizontal floor.the coefficient static friction is0.4 and acceleration of gravity is 9.8m/sdetermine the maximum force of the static friction and the minimum force of F​

Answers

Answer:

first of all since the value of mass of the object and force F(horizontal) or the relation between them is not mentioned , so there can be multiple effects and let us study them in cases.

Let us consider that mass of the object is m and the coefficient of friction is the coefficient of static friction of the surface{since friction can be static as well as dynamic} whose value(μ) as is given in the question is 0.2. Since the surface and the force applied are both horizontal so there will be no vertical component of the force applied which means that the normal force is N=weight of the object=mg where g is the acceleration due to gravity(9.8 m/s^2 on average on surface of earth).

Case 1:

When F<=μN. This means that when the value of F is less than or equal to μN then the static friction is equal to F. So the body remains stationary.

Case 2:

When F>μN. This means that when the value of F is greater than μN then the static friction is less than F. So the body starts moving and if the force applied F is constant then the body will start accelerating because coefficient of kinetic friction is less than that of static friction.

Explanation:

When an object rests on a horizontal floor. the coefficient of static friction is 0.4 and the acceleration of gravity is 9.8m/s, then the maximum force of friction would be 1.962M and the minimum force of friction would be zero when no external force is applied, where M represents the mass of the object

What is friction?

Friction is a type of force that resists or prevents the relative motion of two physical objects when their surfaces come in contact.

When an object is beginning to move as a result of an external force, limiting friction is involved. This frictional force balances the external force until the object is in a condition where it remains stationary.

maximum Frictional force= μN

where  μ is the coefficient of static friction

N is the normal reaction force having a value of mg

Thus, The maximum force of friction would be 1.962M, and the minimum force would be zero

Learn more about friction here

brainly.com/question/24186853

#SPJ5

Bryan Allen pedaled a human-powered aircraft across the English Channel from the cliffs of Dover to Cap Gris-Nez on June 12, 1979.(a) He flew for 169 min at an average velocity of 3.53 m/s in a direction 45° south of east. What was his total displacement?

(b) Allen encountered a headwind averaging 2.00 m/s almost precisely in the opposite direction of his motion relative to the Earth. What was his average velocity relative to the air?

(c) What was his total displacement relative to the air mass?

Answers

Answer:

a) s=35794.2\ m

b) v_w=3.53\ m.s^(-1)

c) s_w=56074.2\ m

Explanation:

Given:

a)

duration of flight, t=169* 60=10140\ s

velocity of flight, v=3.53\ m.s^(-1)

direction of flight, 45^(\circ) to the south of east

Now the total displacement:

s=v.t

s=3.53* 10140

s=35794.2\ m

b)

Velocity of air, v_a=2\ m.s^(-1)

When the aircraft encounters a headwind in the opposite direction to the velocity of motion then the speed of the aircraft is lowered with respect to the ground.

But when the speed is observed with respect to the wind the reduced velocity of the aircraft is observed from an opposite moving wind having a magnitude equal to the difference in velocity of the aircraft. This results in no change in the apparent velocity of the aircraft.

Mathematically:

Velocity of the aircraft with respect to the ground:

v_(g)=v-v_a

v_(g)=3.53-2

v_g=1.53\ m.s^(-1)

Now the velocity of the aircraft with respect to the wind:

v_w=v_g+v_a

v_w=1.53+2

v_w=3.53\ m.s^(-1)

c)

Now the total displacement with respect to the wind:

s_w=v_w.t+v_a.t

s_w=3.53* 10140+2* 10140

s_w=56074.2\ m

PLEASE HELP DUE BEFORE 11:30 TODAY!!!!Which of the following quantities is NOT a vector quantity?
A. 926 m to the north
B. 5.2 m/s to the west
C. 46 m down
D. 12.3 m/s faster

Answers

Answer:

D is not the a vector quantities

A 750-kg automobile is moving at 26.2 m/s at a height of 5.00 m above the bottom of a hill when it runs out of gasoline. The car coasts down the hill and then continues coasting up the other side until it comes to rest. Ignoring frictional forces and air resistance, what is the value of h, the highest position the car reaches above the bottom of the hill?

Answers

To solve this problem it is necessary to apply to the concepts related to energy conservation. For this purpose we will consider potential energy and kinetic energy as the energies linked to the body. The final kinetic energy is null since everything is converted into potential energy, therefore

Potential Energy can be defined as,

PE = mgh

Kinetic Energy can be defined as,

K= (1)/(2) mv^2

Now for Conservation of Energy,

KE_i+PE_i = PE_f

(1)/(2)mv_i^2+mgh_1 = mgh_2

(1)/(2) (750kg) (26.2m/s)^2 + (750)(9.8)(5) = (750)(9.8)h_2

h_2 = 40.0224m

Therefore the highets position the car reaches above the bottom of the hill is 40.02m

What is gravity at north pole, South pole and at different point on the equatorial regions. Give reasoning for your answers why do you think it is different or same. Can you imagine same concept for the electric charge, yes or No

Answers

Answer:

The gravity at Equator is 9.780 m/s2 and the gravity at poles is 9.832 m/s2. The gravity at poles are bigger than at equator, principally because the Earth is not totally round. The gravity is inversely proportional to the square of the radius, that is the reason for the difference of gravity (The radius at Poles are smaller than at Equator).

If Earths would have a net charge Q. The Electric field of Earth would be inversely proportional to the square of the radius of Earth (Electric field definition for a charge), the same case as for gravity. So there would be a difference between the electric field at poles and equator, too.