An unknown substance has a mass of 0.125 kg and an initial temperature of 90.5°C. The substance is then dropped into a calorimeter made of aluminum containing 0.285 kg of water initially at 29.5°C. The mass of the aluminum container is 0.150 kg, and the temperature of the calorimeter increases to a final equilibrium temperature of 32.0°C. Assuming no thermal energy is transferred to the environment, calculate the specific heat of the unknown substance.

Answers

Answer 1
Answer:

Answer:

The specific heat capacity of the substance = 455.38 J/kgK

Explanation:

Heat lost by the substance = Heat gained by water + heat gained by the aluminum calorimeter

Qs = Qw + Qc.................... equation 1

Where Qs = heat lost by the substance, Qw = heat gain by water, Qc = heat gain by the aluminum calorimeter.

Qs = c₁m₁(T₁-T₃)................ equation 2

Qw = c₂m₂(T₃-T₂)............. equation 3

Qc = c₃m₃(T₃-T₂)............. equation 4

Where c₁ = specific heat capacity of the substance, m₁ = mass of the substance, c₂ = specific  heat capacity of water, m₂ = mass of water, c₃ = specific heat capacity of aluminium, m₃ = mass of the aluminum container, T₁ = Initial Temperature of the substance, T₂ = initial temperature of water, T₃ = Final equilibrium temperature.

Substituting equation 2, 3, 4 into equation 1

c₁m₁(T₁-T₃) = c₂m₂(T₃-T₂) + c₃m₃(T₃-T₂)................. equation 5

Making c₁ the subject of equation 5

c₁ =  {c₂m₂(T₃-T₂) + c₃m₃(T₃-T₂)}/m₁(T₁-T₃)............... equation 6

Where c₂ = 4200 J/kgK, m₂ = 0.285 kg, m₁ = 0.125 kg, c₃ = 900 J/kgK, m₃= 0.150 kg, T₁ = 90.5°C, T₂ = 29.5°C, T₃ =  32.0°C

Substituting these values into Equation 6,

c₁ = {4200×0.285(32-29.5) + 900×0.150(32-29.5)}/0.125(90.5-32)

c₁ = {1197(2.5) + 135(2.5)}/7.3125

c₁ = {2992.5 + 337.5}/7.3125

c₁ = 3330/7.3125

c₁ = 455.38 J/kgK.

Therefore the specific heat capacity of the substance = 455.38 J/kgK


Related Questions

Which describes the characteristics of a liquid?a. It has no fixed volume or shape.b. It has a fixed volume and shape.c. It has high energy and expands to fill the container.d. It has a fixed volume and varied shape.
A 12-tooth gear is turned two times. How many times will the 24-tooth gear to which it is connected turn?
A dog walks 12 meters to the west and then 16 meters back to the east
the resultant resistance of two resistance wires in series combination is 108 ohm and in parallel combination is 24 ohm. find the value of individual resistance
Why do sound waves move faster through the ground than through the air?Particles of matter are packed more loosely in the ground than in the air. Particles of matter are packed more tightly in the ground than in the air. Air doesn’t contain any particles of matter to transmit sound waves. The elevation of the ground is lower than the elevation of the air space.

If the frequencies of two component waves are 24 Hz and 20 Hz, they should produce _______ beats per second. A. 2
B. 8
C. 4
D. 12

Answers

This can be answered using the beat frequency formula, which is simply the difference between 2 frequencies.

Let: fᵇ = beat frequency
f₁ = first frequency
f₂ = second frequency

fᵇ = |f₁ - f₂|

substituting the values:
fᵇ = |24Hz - 20Hz|
fᵇ = 4Hz

The unit Hz also means beats per second, therefore:
fᵇ = 4 beats per second

Therefore, the answer is C. 4

C. 4 beats per second is correct

A puck moves 2.35 m/s in a -22° direction. A hockey stick pushes it for 0.215 s, changing its velocity to 6.42 m/s in a 50.0° direction. What was the direction of the acceleration?

Answers

The puck starts with velocity vector

\vec v_0=\left(2.35(\rm m)/(\rm s)\right)(\cos(-22^\circ)\,\vec\imath+\sin(-22^\circ)\,\vec\jmath)=(2.18\,\vec\imath-0.880\,\vec\jmath)(\rm m)/(\rm s)

Its velocity at time t is

\vec v=\vec v_0+\vec at

Over the 0.215 s interval, the velocity changes to

\vec v=\left(6.42(\rm m)/(\rm s)\right)(\cos50.0^\circ\,\vec\imath+\sin50.0^\circ\,\vec\jmath)=(4.13\,\vec\imath+4.92\,\vec\jmath)(\rm m)/(\rm s)

Then the acceleration must have been

\vec v=\vec v_0+(0.215\,\mathrm s)\vec a\implies\vec a=(\vec v-\vec v_0)/(0.215\,\rm s)=(9.06\,\vec\imath+27.0\,\vec\jmath)(\rm m)/(\mathrm s^2)

which has a direction of about 71.4^\circ.

Final answer:

The direction of the acceleration is determined by the direction of the change in velocity. This would be calculated by subtracting the initial velocity vector from the final velocity vector. However, the calculation would involve complex trigonometric functions.

Explanation:

In order to find the direction of the acceleration, we need to calculate the direction of the change in velocity and that direction will be the direction of the acceleration.

To calculate the change in velocity, we subtract the initial velocity from the final velocity: (6.42 m/s, 50.0°) - (2.35 m/s, -22°). We then calculate the angle of this vector which represents the change in velocity, and hence the direction of acceleration.

However, this calculation is not straightforward because it involves vector operations and would require the use of trigonometric functions to solve. This is due to the fact that velocity is a vector, meaning it has both a magnitude and a direction. Consequently, this becomes a multi-step process involving trigonometry and physics.

Learn more about Direction of Acceleration here:

brainly.com/question/33720661

#SPJ2

A new object has been discovered in the solar system. In your own words, justify how the object can be proved to be a comet.

Answers

Answer:

By examining its composition and parts.

Explanation:

A comet is an icy body composed of dust, rock, ice and frozen gases. Comets are commonly found in Kuiper belt and Oort cloud beyond Neptune's orbit. A comet has nucleus, a coma surrounding it and a tail. Comets also orbit the sun in large elliptical paths. Comets from Kuiper belt have smaller period unlike comets from Oort clouds.

A new object would be a comet if it has the same composition and parts.

One way is by using precise calculations in combination with accurately mapping it's position compared to other stars. If it's found to be moving a different way, then it can be proved a comet

What is difference between kilowatt and kilowatt hour?

Answers

Those two units can be compared to a 'mile per hour' and a 'mile per hour - hour'.
One is a rate.  The other is a quantity, after maintaining a rate for some time.

-- 'Joule' is a unit of energy.  It's the amount of work (energy) you do
when you push with a force of 1 newton though a distance of 1 meter.
Lifting 10 pound of beans 3 feet off the floor takes about 40.7 joules of energy.

-- 'Watt' is a rate of using energy . . . 1 joule per second.
If you lift 10 pounds 3 feet off the floor in 1 second, your power is 40.7 watts.

-- 'Watt-second' is the amount of energy used in one second,
at the rate of 1 joule per second . . . 1 joule.

-- 'Watt-hour' is the amount of energy used in one hour,
at the rate of 1 joule per second . . . 3,600 joules.

-- 'Kilowatt' is a bigger rate of using energy . . . 1,000 joules per second.

-- 'Kilowatt - second' is the amount of energy used in one second,
at the rate of 1,000 joules per second . . . 1,000 joules .

-- 'Kilowatt - hour' is the amount of energy used in one hour,
at the rate of 1,000 joules per second . . . 3,600,000 joules .

Depending on where you live, 3,600,000 joules of energy bought
from the electric company costs something between 5¢ and 25¢.


Kilowatt hour is a measure of ENERGY
Kilowatt is a measure of POWER

Terrane accretion generally occurs along a ________ boundary between a continental plate and an oceanic plate.

Answers

Answer; 
Terrane accretion generally occurs along a convergent boundary between a continental plate and an oceanic plate.

Explanation; 
Terrane accretion occur at convergent plate boundaries, however, it may be possible for a terrane to be brought from an exotic location along a transform plate boundary.
Additionally, it is also likely for a new divergent plate boundary to develop that rifts a continent apart.

What does the term heat death refer to?a. a danger of increasing entropy
b. the hot and fiery end to the universe
c. the unavailability of energy to do work
d. a theoretical violation of the second law of thermodynamics

Answers

The term heat death refers to a danger of increasing entropy. The correct option among all the options that are given in the question is the first option or option "a". This theory stems from the second law of thermodynamics and it states that entropy tends to increase in any isolated system. I hope the answer helps you.