A 81.0 kg diver falls from rest into a swimming pool from a height of 4.70 m. It takes 1.84 s for the diver to stop after entering the water. Find the magnitude of the average force exerted on the diver during that time.

Answers

Answer 1
Answer:

Explanation:

The given data is as follows.

             height (h) = 4.70 m,    mass = 81.0 kg

              t = 1.84 s

As formula to calculate the velocity is as follows.

            \nu = 2gh

                       = 2 * 9.8 m/s^(2) * 4.70 m

                       = 92.12 s^(2)

As relation between force, time and velocity is as follows.

                     F = (m * \nu)/(t)

Hence, putting the given values into the above formula as follows.

                  F = (m * \nu)/(t)

                     = (81.0 kg * 92.12 s^(2))/(1.84 s)

                     = 4055.28 N

Thus, we can conclude that the magnitude of the average force exerted on the diver during that time is 4055.28 N.


Related Questions

Compare and contrast, in detail, at least two types of pluralism. Do you think the United States is becoming more pluralistic? Why or why not? How do ethnic enclaves relate to pluralism in the US?
A 3.00N rock is thrown vertically into the air from the ground. At h=15.0m, v=25m/s upward. Use the work-energy theorem to find the initial speed of the rock.a. 3m/sb. 30.3 m/sc. None of the above
A reducing elbow in a horizontal pipe is used to deflect water flow by an angle θ = 45° from the flow direction while accelerating it. The elbow discharges water into the atmosphere. The cross- sectional area of the elbow is 150 cm2 at the inlet and 25 cm2 at the exit. The elevation difference between the centers of the exit and the inlet is 40 cm. The mass of the elbow and the water in it is 50 kg. Determine the anchoring force needed to hold the elbow in place. Take the momentum flux correction factor to be 1.03 at both the inlet and outlet.
Fuel cells have been developed that can generate a large amount of energy. For example, a hydrogen fuel cell works by combining hydrogen and oxygen gas to produce water and electrical energy. If a fuel cell can generate 10.0 kilowatts of power and the current is 15.8 amps, what is the voltage of the electricity?A. 0.63 voltsB. 158voltsC. 633 voltsD. 158,000 voltsE. 5.8 volts
Calculate a pendulum's frequency of oscillation (in Hz) if the pendulum completes one cycle in 0.5 s.

Two workers are sliding 300 kg crate across the floor. One worker pushes forward on the crate with a force of 400 N while the other pulls in the same direction with a force of 290 N using a rope connected to the crate. Both forces are horizontal, and the crate slides with a constant speed. What is the crate's coefficient of kinetic friction on the floor

Answers

Answer:

The kinetic coefficient of friction of the crate is 0.235.

Explanation:

As a first step, we need to construct a free body diagram for the crate, which is included below as attachment. Let supposed that forces exerted on the crate by both workers are in the positive direction. According to the Newton's First Law, a body is unable to change its state of motion when it is at rest or moves uniformly (at constant velocity). In consequence, magnitud of friction force must be equal to the sum of the two external forces. The equations of equilibrium of the crate are:

\Sigma F_(x) = P+T-\mu_(k)\cdot N = 0 (Ec. 1)

\Sigma F_(y) = N - W = 0 (Ec. 2)

Where:

P - Pushing force, measured in newtons.

T - Tension, measured in newtons.

\mu_(k) - Coefficient of kinetic friction, dimensionless.

N - Normal force, measured in newtons.

W - Weight of the crate, measured in newtons.

The system of equations is now reduced by algebraic means:

P+T -\mu_(k)\cdot W = 0

And we finally clear the coefficient of kinetic friction and apply the definition of weight:

\mu_(k) =(P+T)/(m\cdot g)

If we know that P = 400\,N, T = 290\,N, m = 300\,kg and g = 9.807\,(m)/(s^(2)), then:

\mu_(k) = (400\,N+290\,N)/((300\,kg)\cdot \left(9.807\,(m)/(s^(2)) \right))

\mu_(k) = 0.235

The kinetic coefficient of friction of the crate is 0.235.

Final answer:

The calculation of the coefficient of kinetic friction involves setting the total force exerted by the workers equal to the force of friction, as the crate moves at a constant speed. The coefficient of kinetic friction is then calculated by dividing the force of friction by the normal force, which is the weight of the crate. The coefficient of kinetic friction for the crate on the floor is approximately 0.235.

Explanation:

To calculate the coefficient of kinetic friction, we first must understand that the crate moves at a constant velocity, indicating that the net force acting on it is zero. Thus, the total force exerted by the workers (400 N + 290 N = 690 N) is equal to the force of friction acting in the opposite direction.

Since the frictional force (F) equals the normal force (N) times the coefficient of kinetic friction (μk), we can write the equation as F = μkN. Here, the normal force is the weight of the crate, determined by multiplying the mass (m) of the crate by gravity (g), i.e., N = mg = 300 kg * 9.8 m/s² = 2940 N.

Next, we rearrange the equation to solve for the coefficient of kinetic friction: μk = F / N. Substituting the known values (F=690 N, N=2940 N), we find: μk = 690 N / 2940 N = 0.2347. Thus, the coefficient of kinetic friction for the crate on the floor is approximately 0.235.

Learn more about the Coefficient of kinetic friction here:

brainly.com/question/30394536

#SPJ3

A 120-V rms voltage at 60.0 Hz is applied across an inductor, a capacitor, and a resistor in series. If the peak current in this circuit is 0.8484 A, what is the impedance of this circuit

Answers

Answer:

200 \Omega

Explanation:

The computation of the impedance of the circuit is shown below:

Provided that

RMS voltage = 120 v

Frequency = 60.0 Hz

RMS current = 0.600 A

Based on the above information, the formula to compute the impedance is

Z=(V_(max))/(I_(peak))

where,

V_(max) = √(2) * V_(rms)

= √(2) * 120

= 169.7 V

And, I_Peak = 0.8484

Now placing these above values to the formula

So, the impedance of the circuit is

= (169.7)/(0.8484)

= 200 \Omega

The _______ principle encourages us to resolve a set of stimuli, such as trees across a ridgeline, into smoothly flowing patternsA.) depth perception.
B.) perception.
C.) similarity.
D.) continuity.

Answers

Answer:

C

Explanation:

Similarity

As an object in motion becomes heavier, its kinetic energy _____. A. increases exponentially B. decreases exponentially C. increases proportionally D. decreases proportionally

Answers

the answer is c. as an object is in motion speeds up or “becomes heavier”, it’s kinetic energy increases proportionally: double the velocity and you quadruple the kinetic energy. this is why a tiny bullet traveling at high speed does so much more damage than a huge truck bumping into something at 1 mph. so the answer is c

Answer:

c

Explanation:

Much of our knowledge of the interior of the Earth comes from the study of planetary vibrations, which is the science of

Answers

Answer:

Seismology.

Explanation:

  • Seismology is the beach of physical science that deals with the study of vibrations that comes out from the interior of the earth onto the surface and these vibrations are in the form of seismic waves that are primary, secondary, and surface waves.
  • The science of seismology tells about the magnitude and intensity of these waves that lead to planetary vibrations. These waves trigger earthquakes, floods, and even landslides.

To see how two traveling waves of the same frequency create a standing wave. Consider a traveling wave described by the formula y1(x,t)=Asin(kx−ωt)
This function might represent the lateral displacement of a string, a local electric field, the position of the surface of a body of water, or any of a number of other physical manifestations of waves.
1. Find ye(x) and yt(t). Keep in mind that yt(t) should be a trigonometric function of unit amplitude.
2. At the position x=0, what is the displacement of the string (assuming that the standing wave ys(x,t) is present)?
3. At certain times, the string will be perfectly straight. Find the first time t1>0 when this is true.
4. Which one of the following statements about the wave described in the problem introduction is correct?
A. The wave is traveling in the +x direction.
B. The wave is traveling in the −x direction.
C. The wave is oscillating but not traveling.
D. The wave is traveling but not oscillating.
Which of the expressions given is a mathematical expression for a wave of the same amplitude that is traveling in the opposite direction? At time t=0this new wave should have the same displacement as y1(x,t), the wave described in the problem introduction.
A. Acos(kx−ωt)
B. Acos(kx+ωt)
C. Asin(kx−ωt)
D. Asin(kx+ωt)

Answers

The definition of standing wave and trigonometry allows to find the results for the questions about the waves are:

      1. For the standing wave its parts are: spatial y_e = A' \ sin \ kx  and

         temporal part y_t = A' \ cos \ wt

      2. The string moves with an oscillating motion  y = A’ cos wt.

      3. Thefirst displacement is zero for  t = (\pi )/(2w)  

      4. the correct result is:

          A. The wave is traveling in the +x direction.

      5. The correct result is:

          D. Asin(kx+ωt)

Traveling waves are periodic movements of the media that transport energy, but not matter, the expression to describe it is:

       y₁ = A sin (kx -wt)

Where A is the amplitude of the wave k the wave vector, w the angular velocity and x the position and t the time.

1. Ask us to find the spatial and temporal part of the standing wave.

To form the standing wave, two waves must be added, the reflected wave is:

       y₂ = A sin (kx + wt)

The sum of a waves

       y = y₁ + y₂

       y = A (sin kx-wt + sin kx + wt)

We develop the sine function and add.

       Sin (a ± b) = sin a cos b ± sin b cos a

The result is:

       y = 2A sin kx cos wt

They ask that the function be unitary therefore

The amplitude  of each string

        A_ {chord} = A_ {standing wave} / 2

The spatial part is

          y_e= A 'sin kx

The temporary part is:

          y_t = A ’cos wt

2. At position x = 0, what is the displacement of the string?

          y = A ’cos wt

The string moves in an oscillating motion.

3. At what point the string is straight.

When the string is straight its displacement is zero x = 0, the position remains.

           y = A ’cos wt

For the amplitude of the chord to be zero, the cosine function must be zero.

           wt = (2n + 1) (\pi)/(2)  

the first zero occurs for n = 0

          wt = (\pi )/(2)  

           t = (\pi )/(2w)

4) The traveling wave described in the statement is traveling in the positive direction of the x axis, therefore the correct statement is:

         A. The wave is traveling in the +x direction.

5) The wave traveling in the opposite direction is

            y₂ = A sin (kx + wt)

The correct answer is:

            D.     Asin(kx+ωt)

In conclusion using the definition of standing wave and trigonometry we can find the results for the questions about the waves are:

     1. For the standing wave its parts are: spatial y_e = A' \ sin \ kx  and

         temporal part y_t = A' \ cos \ wt

      2. The string moves with an oscillating motion  y = A’ cos wt.

      3. Thefirst displacement is zero for  t = (\pi )/(2w)  

      4. the correct result is:

          A. The wave is traveling in the +x direction.

      5. The correct result is:

          D. Asin(kx+ωt)

Learn more about standing waves here:  brainly.com/question/1121886