Answer:
The second experiment (reversible path) does more work
Explanation:
Step 1:
A piston confines 0.200 mol Ne(g) in 1.20L at 25 degree °C
(a) The gas is allowed to expand through an additional 1.20 L against a constant of 1.00atm
Irreversible path: w =-Pex*ΔV
⇒ with Pex = 1.00 atm
⇒ with ΔV = 1.20 L
W = -(1.00 atm) * 1.20 L
W = -1.20L*atm *101.325 J /1 L*atm = -121.59 J
(b) The gas is allowed to expand reversibly and isothermally to the same final volume.
W = -nRTln(Vfinal/Vinitial)
⇒ with n = the number of moles = 0.200
⇒ with R = gas constant = 8.3145 J/K*mol
⇒ with T = 298 Kelvin
⇒ with Vfinal/Vinitial = 2.40/1.20 = 2
W = -(0.200mol) * 8.3145 J/K*mol *298K *ln(2.4/1.2)
W = -343.5 J
The second experiment (reversible path) does more work
Answer:
Explanation:
Fossil fuels are fuels that are formed by naturally processes leading to the formation of crude oil, coal and natural gas.
Scientists and engineers have used the energy from these fossil fuels to benefit the society by converting these fuels into consumable products for engines which are used for various daily life routine, such as transport (as in the case of the combustible engines in cars, trains, airplanes and ships), power generation (as in the case of gas turbines for power generation, petroleum or diesel for the engines of power generators) and even for home use in food processing (as in the case of cooking gas).
The chemical reaction mostly involved in this process especially in the case of engines is combustion reaction. Combustion reaction is an exothermic reaction in which an organic substance is burnt in excess oxygen to produce carbon dioxide. The energy conserved in this reaction (combustion reaction) is from stored potential energy (in the form of chemical energy) to thermal energy (which is the heat released when the hydrocarbon is burnt).
As mentioned earlier, one of the methods of using fossil fuels for energy is it's use in power generation by power generating sets (generators) and gas turbines. One advantage of using fossil fuel products for power generation is that it is cheaper than it's alternatives (such as solar power generation). However, one disadvantage of using fossil fuel products for power generation is that they release toxic gases/chemicals (such as carbon monoxide, CO, nitrogen oxides, NO and NO₂) into the atmosphere.
The energy in fossil fuels is harnessed and used mostly through the process of combustion which provides a high energy output but contributes negatively to the environment by increasing carbon dioxide levels.
Scientists and engineers harness and use energy in fossil fuels like coal, petroleum, and natural gas to benefit society in a number of ways, primarily through combustion. The combustion process is a chemical reaction whereby energy is released by burning these fuels amidst oxygen. This results in heat and energy, which is then converted to electricity and used for transportation, industrial production, and home heating purposes.
A common method is to burn these fuels, which in turn powers steam-driven turbines to produce electricity. The energy from the combustion of the fuels is transferred into mechanical work which is then converted into electrical energy. This process points to the principal of energy conservation which states that energy is neither created nor destroyed, but merely transformed from one form to another.
This method, however, has its pros and cons. On the positive side, fossil fuels are comparatively easy to extract, abundant, and provide a high energy output. But on the flip side, burning fossil fuels leads to environmental degradation by releasing carbon dioxide and contributing to global warming. Also, these fuels are non-renewable, and the resources are limited.
#SPJ3
Answer:
Water.
Explanation:
Hello,
In this case, you are referring to the dissociation or formation of water at the equilibrium, that is:
In such a way, the water is the conjugate acid of the hydroxile ion as long as it gains a proton.
Best regards.
Answer:
- Proper urine flow by signalling the kidney cells.
- They act as mechanoreceptors or sensory receptors.
Explanation:
liquid 1 and 2 have the same color and mass so the answer would be liquid 1 and 2
Explanation:
hope this is helpful