Dry ice is solid carbon dioxide. Instead of melting, solid carbon dioxide sublimes according to the equation: CO2(s)→CO2(g). When dry ice is added to warm water, heat from the water causes the dry ice to sublime more quickly. The evaporating carbon dioxide produces a dense fog often used to create special effects. In a simple dry ice fog machine, dry ice is added to warm water in a Styrofoam cooler. The dry ice produces fog until it evaporates away, or until the water gets too cold to sublime the dry ice quickly enough. Suppose that a small Styrofoam cooler holds 15.0 L of water heated to 90 ∘C. Calculate the mass of dry ice that should be added to the water so that the dry ice completely sublimes away when the water reaches 28 ?

Answers

Answer 1
Answer:

Answer:

6.82 kg

Explanation:

Given that the amount of water is 15L and we know that the density of water is ≈ 1kg/L. The mass of water is given by mass = volume x density, i.e,

mass = 15 x 1 = 15 kg. Also the specific heat capacity of water is 4.186 KJ/kg.

The sublimation enthalpy of dry ice is 571 KJ/kg.

Now, the amount of heat lost by water is entirely used up for the sublimation (conversion from soild to gas) of dry ice. And the heat (Q) lost by water is given as : Q = mCΔT, where m is the mass of water, C the specific heat capacity of water and ΔT the change in temperature.

Here, Q = 15 x 4.186 x (90 - 28) = 3892.98 KJ.

This amount of heat is taken up by the dry ice for its sublimation. Also the energy taken by dry ice (Q') for its sublimation is given by: Q' = m'L', where m' is the mass of dry ice, L' is the latent heat of sublimation (i.e, the amount of heat required per kg of a substance to sublime) of dry ice amd L' = 571 KJ/kg.

Now, Q' =m'L' = heat lost by water = 3892.98KJ.

And, m'L' = m' x 571 KJ/kg = 3892.98 KJ. (Dividing with 571)

Therefore, m' = 6.82 kg.  


Related Questions

Balance the following half reaction in basic conditions. Then, indicate the coefficients for H2O and OH– for the balanced half reaction, and which side they appear on. Si (s) + Mg(OH)2 (s) → Mg (s) + SiO32- (aq)
Which of the following chemicals is potentially dangerous?A. ammonium nitrateB. ethyl alcoholC.sulfuric acidD.All chemicals are potentially dangerous
If the mass percentage composition of a compound is 72.1% Mn and 27.9% O, its empirical formula is
a chemist encounters an unknown metal. They drop the metal into a graduated cylinder containing water, and find the volume change is 3.2 mL. If the metal weighs 1.5g, what is the density in g/mL of the metal?
A weather balloon is inflated to a volume of 27.3 L at a pressure of 738 mmHg and a temperature of 26.9 ∘C. The balloon rises in the atmosphere to an altitude where the pressure is 375 mmHg and the temperature is -15.6 ∘C.Assuming the balloon can freely expand, calculate the volume of the balloon at this altitude.

What is the speed of a rocket in units of meter/ second if its travels at a speed of 1000 km/minutes?

Answers

Answer:

1,080 m

Explanation:

5 poisEnergy pyramids illustrate the transfer of 10% of the energy stored by
producers flowing from the bottom level to primary consumers. What
happens to the other 90% of the energy?
О
The remaining 90% is transformed for life activities such as movement, growth, or
released as heat.
The remaining 90% evaporates into the atmosphere.
The remaining 90% transforms into Hydrogen and Oxygen.
The remaining 90% is recombined to maker larger molecules.

Answers

The remaining 90% transforms into Hydrogen and Oxygen. The remaining 90% is recombined to maker larger molecules. I think

The [Fe(H₂O)₆]³⁺ complex requires a relatively small amount of energy to promote an electron from the t2g to the eg. Based on the UV data, predict the spin of this complex.

Answers

Answer:

The spin of the complex is 5.92 B.M

Explanation:

Please see the attachments below

Final answer:

The [Fe(H₂O)₆]³⁺ complex is a high-spin complex due to the relatively small energy required to promote an electron from the t2g to the eg orbital. As such, it is reasonable to predict that it has a high-spin state with five unpaired electrons.

Explanation:

The [Fe(H₂O)₆]³⁺ complex is a type of coordination complex in which the central metal atom, Fe³⁺, is surrounded by six water molecules acting as ligands. The spin state of such a complex can be determined based on the energy required to promote an electron from the t2g to the eg.

In [Fe(H₂O)₆]³⁺, the field produced by the water ligands is relatively weak, resulting in a small crystal field splitting (Aoct <P). Given that it requires less energy for the electrons to occupy the eg orbitals than to pair up, there will be an electron in each of the five 3d orbitals before any pairing occurs. Hence, for the six d electrons on the Fe³⁺ ion in [Fe(H₂O)₆]³⁺, there should be one pair (two electrons) and four unpaired electrons.

High-spin complexes are those in which the electrons tend not to pair up because the crystal field splitting is not large enough to make it energetically favorable for them to do so. Given that the [Fe(H₂O)₆]³⁺ complex falls under the categories of high-spin complexes, it is reasonable to predict that it exhibits a high-spin state with five unpaired electrons.

Learn more about Coordination Complexes and Spin States here:

brainly.com/question/31672813

#SPJ11

The steps in a reaction mechanism are as follows. Which species is acting as a catalyst? Step 1: Ag+(aq) + Ce4+(aq) <-----> Ag2+(aq) + Ce3+(aq) Step 2: Tl+(aq) + Ag2+(aq) -----> Tl2+(aq) + Ag+(aq) Step 3: Tl2+(aq) + Ce4+(aq) -----> Tl3+(aq) + Ce3+(aq)

Answers

The specie which is acting as a catalyst is; Ag+(aq).

Discussion:

The catalyst is a specie that exists in the same form at the beginning and end of the reaction.

The reaction's mechanism is as follows;

  • Step 1: Ag+(aq) + Ce⁴+(aq) <-----> Ag²+(aq) + Ce³+(aq)

  • Step 2: Tl+(aq) + Ag²+(aq) -----> Tl²+(aq) + Ag+(aq)

  • Step 3: Tl²+(aq) + Ce⁴+(aq) -----> Tl³+(aq) + Ce³+(aq)

Evidently, although Ag+(aq) was converted to Ag²+(aq) in Step 1 of the reaction; the Ag²+(aq) is reverted back to Ag+(aq) in Step 2 of the reaction.

Read more:

brainly.com/question/22498090

Answer:

Ag⁺ acts as the catalyst.

Explanation:

Hello,

In this case, each step is reorganized:

- Step 1:

Ag^+(aq) + Ce^(4+)(aq) \rightleftharpoons Ag^(2+)(aq) + Ce^(3+)(aq)

- Step 2:

Tl^+(aq) + Ag^(2+)(aq) \rightarrow  Tl^(2+)(aq) + Ag^+(aq)

- Step 3:

Tl^(2+)(aq) + Ce^(4+)(aq) \longrightarrow Tl^(3+)(aq) + Ce^(3+)(aq)

In such a way, Ag⁺ is converted to Ag²⁺ in the first step, but then it is regenerated to simple Ag⁺, therefore, Ag⁺ acts as the catalyst.

Best regards.

A rigid container of gas has a pressure of 1.72 atm and temperature of 21 oC. If the temperature increases to 85 oC, what is the new pressure in atm?

Answers

Answer:

the new pressure is 2.09 atm

Explanation:

you have to use gay lussac's law so the formula is

p1/t1 = p2/t2

and convert C to Kelvin k=C+273.15

1.72atm/294.15 = p2/358.15

solve for p2 by multiplying 358.15 on both sides

p2=2.09 atm

Adding charts and graphs helps a scientistO To state the problem
O To determine trends
O To simplify results
O Both B and C
O All of the above

Answers

Answer:

b and c

Explanation:

the problem was solved through the experiment and tested

Adding charts and graphs helps a scientist to determine trends and to simplify results