Answer:
6.82 kg
Explanation:
Given that the amount of water is 15L and we know that the density of water is ≈ 1kg/L. The mass of water is given by mass = volume x density, i.e,
mass = 15 x 1 = 15 kg. Also the specific heat capacity of water is 4.186 KJ/kg.
The sublimation enthalpy of dry ice is 571 KJ/kg.
Now, the amount of heat lost by water is entirely used up for the sublimation (conversion from soild to gas) of dry ice. And the heat (Q) lost by water is given as : Q = mCΔT, where m is the mass of water, C the specific heat capacity of water and ΔT the change in temperature.
Here, Q = 15 x 4.186 x (90 - 28) = 3892.98 KJ.
This amount of heat is taken up by the dry ice for its sublimation. Also the energy taken by dry ice (Q') for its sublimation is given by: Q' = m'L', where m' is the mass of dry ice, L' is the latent heat of sublimation (i.e, the amount of heat required per kg of a substance to sublime) of dry ice amd L' = 571 KJ/kg.
Now, Q' =m'L' = heat lost by water = 3892.98KJ.
And, m'L' = m' x 571 KJ/kg = 3892.98 KJ. (Dividing with 571)
Therefore, m' = 6.82 kg.
Answer:
1,080 m
Explanation:
producers flowing from the bottom level to primary consumers. What
happens to the other 90% of the energy?
О
The remaining 90% is transformed for life activities such as movement, growth, or
released as heat.
The remaining 90% evaporates into the atmosphere.
The remaining 90% transforms into Hydrogen and Oxygen.
The remaining 90% is recombined to maker larger molecules.
Answer:
The spin of the complex is 5.92 B.M
Explanation:
Please see the attachments below
The [Fe(H₂O)₆]³⁺ complex is a high-spin complex due to the relatively small energy required to promote an electron from the t2g to the eg orbital. As such, it is reasonable to predict that it has a high-spin state with five unpaired electrons.
The [Fe(H₂O)₆]³⁺ complex is a type of coordination complex in which the central metal atom, Fe³⁺, is surrounded by six water molecules acting as ligands. The spin state of such a complex can be determined based on the energy required to promote an electron from the t2g to the eg.
In [Fe(H₂O)₆]³⁺, the field produced by the water ligands is relatively weak, resulting in a small crystal field splitting (Aoct <P). Given that it requires less energy for the electrons to occupy the eg orbitals than to pair up, there will be an electron in each of the five 3d orbitals before any pairing occurs. Hence, for the six d electrons on the Fe³⁺ ion in [Fe(H₂O)₆]³⁺, there should be one pair (two electrons) and four unpaired electrons.
High-spin complexes are those in which the electrons tend not to pair up because the crystal field splitting is not large enough to make it energetically favorable for them to do so. Given that the [Fe(H₂O)₆]³⁺ complex falls under the categories of high-spin complexes, it is reasonable to predict that it exhibits a high-spin state with five unpaired electrons.
#SPJ11
The specie which is acting as a catalyst is; Ag+(aq).
Discussion:
The catalyst is a specie that exists in the same form at the beginning and end of the reaction.
The reaction's mechanism is as follows;
Evidently, although Ag+(aq) was converted to Ag²+(aq) in Step 1 of the reaction; the Ag²+(aq) is reverted back to Ag+(aq) in Step 2 of the reaction.
Read more:
Answer:
Ag⁺ acts as the catalyst.
Explanation:
Hello,
In this case, each step is reorganized:
- Step 1:
- Step 2:
- Step 3:
In such a way, Ag⁺ is converted to Ag²⁺ in the first step, but then it is regenerated to simple Ag⁺, therefore, Ag⁺ acts as the catalyst.
Best regards.
Answer:
the new pressure is 2.09 atm
Explanation:
you have to use gay lussac's law so the formula is
p1/t1 = p2/t2
and convert C to Kelvin k=C+273.15
1.72atm/294.15 = p2/358.15
solve for p2 by multiplying 358.15 on both sides
p2=2.09 atm
O To determine trends
O To simplify results
O Both B and C
O All of the above
Answer:
b and c
Explanation:
the problem was solved through the experiment and tested