19.2 g of vinegar solution
Explanation:
Here we have the chemical reaction between acetic acid (CH₃COOH) and calcium carbonate (CaCO₃):
2 CH₃COOH + CaCO₃ → (CH₃COO)₂Ca + CO₂ + H₂O
number of moles = mass / molecular weight
number of moles of CaCO₃ = 0.8 / 100 = 0.008 moles
Knowing the chemical reaction, we devise the following reasoning:
if 2 moles of CH₃COOH react with 1 moles of CaCO₃
then X moles of CH₃COOH react with 0.008 moles of CaCO₃
X = (2 × 0.008) / 1 = 0.016 moles of CH₃COOH
mass = number of moles × molecular weight
mass of acetic acid (CH₃COOH) = 0.016 × 60 = 0.96 g
Now to find the volume of vinegar acid (solution of acetic acid) with a concentration of 5% (weight/volume) we use the following reasoning:
if there are 5 g of acetic acid in 100 mL of vinegar solution
then there are 0.96 g of acetic acid in Y mL of vinegar solution
Y = (0.96 × 100) / 5 = 19.2 g of vinegar solution
Learn more about:
weight/volume concentration
#learnwithBrainly
b.. Different kinds of elements have different kinds of atoms.
c..The protons, neutrons and electrons are different for different kinds of atoms.
d... An atom always has the same number of protons and electrons.
e... An atom always has the same number of protons and neutrons.
f.... Atoms have no mass because they are very small.
Q2 .Compare the Rutherford's model and the Bohr's model of the atom. State one similarity and one difference between them.
Q3..what observation from rutherford's gold foil experiment made him conclude that an atom has a tiny but dense nucleus that is positively charged?
Q4.. Explain why the nucleus of an atom is positively charged, while the atom is electrically neutral.
Q5...The symbols and atomic numbers of three elements are as follows:
Ne Atomic number 10
A/ Atomic number 13
K Atomic number 19
a.. identify each element from its symbol.
b.. How many protons and electrons does an atom of each element have?
c.. Draw the electronic structure of the atom of each element.
Answer:
a. false
b. true
c. false
d. false
e. false
f. false
Q2: Both have electrons orbiting around the nucleus; Bohr's model is more detailed and expands on Rutherford's
Q5:
a.
Ne = neon
Al = aluminum
K = potassium
b.
Ne = 10 electrons/protons
Al = 13 electrons/protons
K = 19 electrons/protons
Answer:
The ratio of solution 1 to solution 2 is 24.20 to 100.00.
Explanation:
We will mix V₁ (L) of solution 1 with V₂ (L) of solution 2 to get the final solution.
So the mole concentration in the final solution is calculated as below, note that C₁ is the concentration of solution 1, and C₂ is the concentration of solution 2
Then we can calculate for the ratio
or
Answer:
35.6 g of W, is the theoretical yield
Explanation:
This is the reaction
WO₃ + 3H₂ → 3H₂O + W
Let's determine the limiting reactant:
Mass / molar mass = moles
45 g / 231.84 g/mol = 0.194 moles
1.50 g / 2 g/mol = 0.75 moles
Ratio is 1:3. 1 mol of tungsten(VI) oxide needs 3 moles of hydrogen to react.
Let's make rules of three:
1 mol of tungsten(VI) oxide needs 3 moles of H₂
Then 0.194 moles of tungsten(VI) oxide would need (0.194 .3) /1 = 0.582 moles (I have 0.75 moles of H₂, so the H₂ is my excess.. Then, the limiting is the tungsten(VI) oxide)
3 moles of H₂ need 1 mol of WO₃ to react
0.75 moles of H₂ would need (0.75 . 1)/3 = 0.25 moles
It's ok. I do not have enough WO₃.
Finally, the ratio is 1:1 (WO₃ - W), so 0.194 moles of WO₃ will produce the same amount of W.
Let's convert the moles to mass (molar mass . mol)
0.194 mol . 183.84 g/mol = 35.6 g
Answer:
Stoichiometric coefficient of hydrogen gas is 1.
Stoichiometric coefficient of palmitic acid is 1.
Explanation:
Addition of hydrogen to double bond is termed as hydrogenation reaction.
According to stoichiometry, 1 mole of palmitoleic acid reacts with 1 mole of hydrogen gas to give 1 mole of palmitic acid.
Stoichiometric coefficient of hydrogen gas is 1.
Stoichiometric coefficient of palmitic acid is 1.
Answer:
ksp = 0,176
Explanation:
The borax (Na₂borate) in water is in equilibrium, thus:
Na₂borate(s) ⇄ borate²⁻(aq) + 2Na⁺(aq)
When you add just borax, the moles of Na²⁺ are twice the moles of borate²⁻, that means 2borate²⁻=Na⁺ (1)
The ksp is defined as:
ksp = [borate²⁻] [Na⁺]²
Then, borate²⁻(B₄O₇²⁻) reacts with HCl thus:
B₄O₇²⁻ + 2HCl + 5H₂O → 4H₃BO₃ + 2Cl⁻
The moles of HCl that reacts with B₄O₇²⁻ are:
0,500M×0,01200L = 6,00x10⁻³ mol of HCl
As two moles of HCl react with 1 mol of B₄O₇²⁻, the moles of B₄O₇²⁻ are:
6,00x10⁻³ mol of HCl× = 3,00x10⁻³ mol of B₄O₇²⁻
For (1), moles of Na⁺ are 3,00x10⁻³ mol ×2 = 6,00x10⁻³ mol of Na⁺
The [borate²⁻] is 3,00x10⁻³ mol of B₄O₇²⁻/0,00850L = 0,353M
And [Na⁺] is 6,00x10⁻³ mol of Na⁺ / 0,00850L = 0,706M
Replacing in the expression of ksp:
ksp = [0,353] [0,706]²
ksp = 0,176
I hope it helps!