Given:
V1 = 4m3
T1 = 290k
P1 = 475 kpa = 475000 Pa
V2 = 6.5m3
T2 = 277K
Required:
P
Solution:
n = PV/RT
n = (475000 Pa)(4m3) / (8.314 Pa-m3/mol-K)(290k)
n = 788 moles
P = nRT/V
P = (788 moles)(8.314 Pa-m3/mol-K)(277K)/(6.5m3)
P = 279,204 Pa or 279 kPa
220
0
Is The direction N, S, E, W, or N/A
Answer:
Explanation:
The dart will go forward horizontally with velocity of 19 m/s. It will also fall downwards with initial velocity of zero and gravitational acceleration of 9.8 m/s².
Distance PQ covered by the dart can be calculated using the following formula.
s = ut + 1/2 at²
u is initial velocity , a is acceleration and t is time.
Putting the values
s = 0 + 1/2 x 9.8 x .19²
= .1769 m
= 17.69 cm.
b. False
D = distance between the cars at the start of time = 680 km
v₁ = speed of one car
v₂ = speed of other car = v₁ - 10
t = time taken to meet = 4 h
distance traveled by one car in time "t" + distance traveled by other car in time "t" = D
v₁ t + v₂ t = D
(v₁ + v₂) t = D
inserting the values
(v₁ + v₁ - 10) (4) = 680
v₁ = 90 km/h
rate of slower car is given as
v₂ = v₁ - 10
v₂ = 90 - 10 = 80 km/h
The slower car travels at 75 km/hr while the faster car travels at 85 km/hr. They meet up after both traveling for 4 hours, thereby covering the 680 kilometers between them.
The subject of this question is algebra - specifically involving rates of speed and time. Here's how you would find the answer:
The result would be 75 km/hr for the slower car and 85 km/hr for the faster car. They meet up after both traveling for 4 hours, thereby covering the 680 kilometers between them.
#SPJ12
2.)It has a low hydronium ion concentration.
3.)It is neutral.
4.)It has no H2O molecules.
Answer:
the answer is A
Explanation:
took my segment exam!!