Gregor Mendel is referred to as the father of which classical science?

Answers

Answer 1
Answer: Gregor Mendel was a scientist born in the Austrian Empire in 1822. He conducted pea plant experiments and established many of the rules of heredity. He was explaining the significance of invisible factors ( now called genes ) for the inheritance. He also experimented with hawkweed and honeybees. Mendel is referred to as "The Father of Genetics". Answer: Genetics.
Answer 2
Answer:

the answer to the question is genetic science


Related Questions

Plants are classified asA. multi-celled eukaryotes. B. multi-celled prokaryotes. C. single-celled eukaryotes. D. single-celled prokaryotes.
Measurements of a plant's growth over a two-week period representa. qualitative data. b. variables. c. hypotheses. d. quantitative data
Which organelle can be compared to a security guard who decides whom may enter a building and whom may not?
why is it more important for dna replication to be exact than for transcription or translation to be exact
The Robinson projection map is considered very useful because _____.all of the continents are the same size it shows land masses in three dimensions most distances, sizes, and shapes are accurate features near edges are most accurate

When land is completely bare, with no topsoil present, the process of ___________ occurs on this newly formed land.primary succession
secondary succession
tertiary succession

Answers

Answer:

Secondary

Explanation:

PLEASE I WILL MARK AND 5 STARS < THANKS

Answers

Answer:

The correct answer is heterozygous.

Explanation:

The pea pods are heterozygous for pod color (Gg).

"G" is the dominant gamete and "g" is non-dominant. This explains why the pod in the fourth square is yellow because there is no "G" gamete, which would dominate the "g" gamete and make the pod green.

What is the phenotypic ratio for a cross where both parents are heterozygous for both high-voice and sharp claws?

Answers

9:3:3:1 9 being high voice sharp claws 3 being low voice sharp claws other 3 being high voice dull claws and 1 being low voice low claws

What does the zygote depend on for water and nutrients

Answers

The zygote depends on the body of the gametophyte

What did Thomas Hunt Morgan discover?

Answers

Thomas Hunt Morgan hoped to discover large-scale mutations that would represent the emergence of new species.

1910

Thomas Hunt Morgan (1866-1945) establishes the chromosomal theory of heredity

Thomas Hunt Morgan, an embryologist who had turned to research in heredity, in 1907 began to extensively breed the common fruit fly, Drosophila melanogaster. He hoped to discover large-scale mutations that would represent the emergence of new species. As it turned out, Morgan confirmed Mendelian laws of inheritance and the hypothesis that genes are located on chromosomes. He thereby inaugurated classical experimental 

After breeding millions of Drosophila in his laboratory at Columbia University, in 1910 Morgan noticed one fruit fly with a distinctive characteristic: white eyes instead of red. He isolated this specimen and mated it to an ordinary red-eyed fly. Although the first generation of 1,237 offspring was all red-eyed but for three, white-eyed flies appeared in larger numbers in the second generation. Surprisingly, all white-eyed flies were male.

These results were suggestive for hypotheses of which Morgan himself was skeptical. He was at the time critical of the Mendelian theory of inheritance, mistrusted aspects of chromosomal theory, and did not believe that Darwin's concept of natural selection could account for the emergence of new species. But Morgan's discoveries with white- and red-eyed flies led him to reconsider each of these hypotheses.

In particular, Morgan began to entertain the possibility that association of eye color and sex in fruit flies had a physical and mechanistic basis in the chromosomes. The shape of one ofDrosophila's four chromosome pairs was thought to be distinctive for sex determination. Males invariably possess the XY chromosome pair (Morgan used a more cumbersome notation) while flies with the XX chromosome are female. If the factor for eye color was located exclusively on the X chromosome, Morgan realized, Mendelian rules for inheritance of dominant and recessive traits could apply.

In brief, Morgan had discovered that eye color in Drosophilaexpressed a sex-linked trait. All first-generation offspring of a mutant white-eyed male and a normal red-eyed female would have red eyes because every chromosome pair would contain at least one copy of the X chromosome with the dominant trait. But half the females from this union would now possess a copy of the white-eyed male's recessive X chromosome. This chromosome would be transmitted, on average, to one-half of second-generation offspring—one-half of which would be male. Thus, second-generation offspring would include one-quarter with white eyes—and all of these would be male.

Intensive work led Morgan to discover more mutant traits—some two dozen between 1911 and 1914. With evidence drawn from cytology he was able to refine Mendelian laws and combine them with the theory—first suggested by Theodor Boveri and Walter Sutton—that the chromosomes carry hereditary information. In 1915, Morgan and his colleagues published The Mechanism

• Discrete pairs of factors located on chromosomes like beads on a string bear hereditary information. These factors—Morgan would soon call them genes—segregate in germ cells and combine during reproduction, essentially as predicted by Mendelian laws. However:

• Certain characteristics are sex-linked—that is, occur together because they arise on the same chromosome that determines gender. More generally:

• Other characteristics are also sometimes associated because, as paired chromosomes separate during germ cell development, genes proximate to one another tend to remain together. But sometimes, as a mechanistic consequence of reproduction, this linkage between genes is broken, allowing for new combinations of traits.

Morgan's experimental and theoretical work inaugurated research in genetics and promoted a revolution in biology. Evidence he adduced from embryology and cell theory pointed the way toward a synthesis of genetics with evolutionary theory. Morgan himself explored aspects of these developments in later work, includingEvolution and Genetics published in 1925, and The Theory of the Gene in 1926. He received the Nobel Prize in Physiology or Medicine in 1933.

Cures and medicines for diseases, such as diabetes, can be credited to the study of _____.

Answers

Answer:

Biology

Explanation:

Study of various organ systems including the endocrine system of human provided information about the role of insulin hormone in the regulation of blood sugar level. It elucidated the role of insulin in the development of diabetes.  

Once information about the causes of the diabetes was obtained, the development of methods of its treatment became possible by targeting the regulation of normal insulin level in the body. This is how the study of biology helped in the development of treatment and medicines for disease such as diabetes.  

Cures and medicines for diseases, such as diabetes, can be credited to the study of Biology