Answer:
All of the above
Explanation:
According to Newton's second law of motion,
If a certain force is applied on objects of different mass, the lighter object will travel farther and faster. All the options in the question have pairs where one object is lighter than other.
So, Jim can throw a tennis ball farther than a basketball. Jim can throw a can of soda farther than a liter bottle of soda and he can throw a chair farther than a couch.
Given that,
Mass of magnesium, m = 2 kg
Heat added to it, Q = 8160 J
Increase in temperature,
To find,
The specific heat of magnesium.
Solution,
Th formula that is used to find the heat required to raise the temperature in terms of specific heat is given by :
So, the specific heat of magnesium is .
B.They maintain the distance of a force.
C.They apply force quickly.
D.They decrease the power available.
Answer:
λ =
Explanation:
Using the De Broglie equation, the characteristic wavelength is given by:
λ =
where
h = Planck's constant = Js.
p = momentum
Momentum, p, can be calculated using:
p =
where
m = mass of the electron = kg
E = Energy of the electron = 13.4 keV = J = J
=> p =
p =
p = kgm/s
Therefore, characteristic wavelength, λ, is:
λ =
λ =
In physics, the characteristic wavelength is the wavelength associated with an object's kinetic energy. It can be determined using the equations for energy, frequency, and wavelength.
In physics, the characteristic wavelength refers to the wavelength associated with a moving object's kinetic energy. The kinetic energy of an object is given by 1/2mv², where m is the mass of the object and v is its speed.
When an object's kinetic energy is known, we can use the equation E = hf, where E is the energy, h is Planck's constant, and f is the frequency of the wave associated with the object, to find the characteristic wavelength.
The equation is rearranged to solve for f, and then the frequency is used to calculate the wavelength using the formula λ = c/f, where λ is the wavelength and c is the speed of light.
By plugging in the given values of the object's mass and speed, you can determine its characteristic wavelength using these equations.
#SPJ3
Answer:
The change in momentum increases because the impact time increases.
Explanation:
The change in momentum of an object is also called impulse (J), and it is equal to
where
F is the force applied to the object
is the time taken for the change in momentum of the object to occur (the impact time)
From the formula above, we can notice that:
- the larger the force, the larger the change in momentum
- the larger the impact time, the larger the change in momentum
In the example of the baseball caught by the glove, when the glove moves backward, the time taken for the ball to stop increases (due to the movement of the gloves). Looking at the formula, we see that this means that the impulse (the change in momentum) increases.
Answer:
The change in momentum stays the same because the ball still comes to a stop.
Explanation:
here we know that momentum is defined as the product of mass and velocity
so here we know that
now we know that formula to find the change in momentum is given as
now when player moves his hand backwards then in this case final speed of the ball is zero and initial speed is same
So here we can say that there is no change in the equation but only the the to stop the ball is increased.
So here change in momentum will remain the same