B. Connected by bonds to form compounds.
OC. The basic building blocks of matter.
O D. Heterogeneous and refer to color, texture, and appearance.
Reset Selection
Atoms are the basic building blocks of matter. The correct option is C.
Atoms are the basic unit and building block of matter. They are the smallest unit, but they can be divided. They do not emit charge on dividing into the further, the smallest parts.
Atoms are further divided into electrons, protons, and neutrons. They are the charged particles that revolve in the shell of the atom. A nucleus is also present in the between of the atom.
Atoms are considered the building blocks of matter, as all matter is made up of many atoms. The configuration of the atom defines the state of matter.
Thus, the correct option is C. The basic building blocks of matter.
To learn more about atoms, refer to the link:
#SPJ5
Answer:c
Explanation: atoms make matter
Answer:
Explanation:
Combustion means the process by which the burning of any substance, whether gaseous, liquid or solid, occurs. In this process, the fuel oxidizes and gives off heat, and, frequently, light.
Combustion reactions are reactions where oxygen intervenes as a reagent. Oxygen has the ability to combine with various elements to produce oxides, where then oxidation is the combination of oxygen with another substance. There are oxidations that are extremely slow, but when oxidation is rapid it is called combustion.
When a substance containing carbon and hydrogen (a hydrocarbon) undergoes complete combustion, or burning, oxygen is consumed and carbon dioxide is produced, and water. Incomplete combustion can also occur when part of the fuel does not react completely because oxygen is not enough.
Answer: 484.94 K
Explanation:
T2 = T1 X V2 / V1
Temperature must be in kelvin so 543 + 273.15 =816.15
816.15 X 51.1 / 86
Answer: We can use the combined gas law to solve this problem:
(P₁V₁/T₁) = (P₂V₂/T₂)
where P is pressure, V is volume, and T is temperature in Kelvin.
We know that P₁ = P₂ (the pressure is assumed to be constant), and we are given V₁, T₁, and V₂. We can solve for T₂:
(P₁V₁/T₁) = (P₂V₂/T₂)
T₂ = (P₂V₂/T₁) * (T₁/P₁V₁)
We need to convert the initial temperature from Celsius to Kelvin:
T₁ = 543 + 273 = 816 K
Substituting the values:
T₂ = (1 atm * 86 mL / 816 K) * (51.1 mL / 1 atm * 86 mL)
T₂ = 0.0629 * 51.1 * 1000 = 3217 K
Therefore, the marshmallow would need to be heated to a temperature of 3217 K for its volume to change from 86 mL to 51.1 mL.
Enjoy (:
b. chemical equilibrium
c. reversible reaction
d. none of the above
Answer:
1.A
2.FALSE
3.C
100%